Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Annu Rev Genomics Hum Genet ; 24: 305-332, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37220313

ABSTRACT

Genetic data contain a record of our evolutionary history. The availability of large-scale datasets of human populations from various geographic areas and timescales, coupled with advances in the computational methods to analyze these data, has transformed our ability to use genetic data to learn about our evolutionary past. Here, we review some of the widely used statistical methods to explore and characterize population relationships and history using genomic data. We describe the intuition behind commonly used approaches, their interpretation, and important limitations. For illustration, we apply some of these techniques to genome-wide autosomal data from 929 individuals representing 53 worldwide populations that are part of the Human Genome Diversity Project. Finally, we discuss the new frontiers in genomic methods to learn about population history. In sum, this review highlights the power (and limitations) of DNA to infer features of human evolutionary history, complementing the knowledge gleaned from other disciplines, such as archaeology, anthropology, and linguistics.


Subject(s)
Archaeology , Genomics , Humans , Human Genome Project , Anthropology , Biological Evolution
2.
PLoS Genet ; 18(6): e1010243, 2022 06.
Article in English | MEDLINE | ID: mdl-35737729

ABSTRACT

Founder events play a critical role in shaping genetic diversity, fitness and disease risk in a population. Yet our understanding of the prevalence and distribution of founder events in humans and other species remains incomplete, as most existing methods require large sample sizes or phased genomes. Thus, we developed ASCEND that measures the correlation in allele sharing between pairs of individuals across the genome to infer the age and strength of founder events. We show that ASCEND can reliably estimate the parameters of founder events under a range of demographic scenarios. We then apply ASCEND to two species with contrasting evolutionary histories: ~460 worldwide human populations and ~40 modern dog breeds. In humans, we find that over half of the analyzed populations have evidence for recent founder events, associated with geographic isolation, modes of sustenance, or cultural practices such as endogamy. Notably, island populations have lower population sizes than continental groups and most hunter-gatherer, nomadic and indigenous groups have evidence of recent founder events. Many present-day groups--including Native Americans, Oceanians and South Asians--have experienced more extreme founder events than Ashkenazi Jews who have high rates of recessive diseases due their known history of founder events. Using ancient genomes, we show that the strength of founder events differs markedly across geographic regions and time--with three major founder events related to the peopling of Americas and a trend in decreasing strength of founder events in Europe following the Neolithic transition and steppe migrations. In dogs, we estimate extreme founder events in most breeds that occurred in the last 25 generations, concordant with the establishment of many dog breeds during the Victorian times. Our analysis highlights a widespread history of founder events in humans and dogs and elucidates some of the demographic and cultural practices related to these events.


Subject(s)
Asian People , Genetics, Population , Alleles , Animals , Dogs , Ethnicity , Founder Effect , Humans , Population Density
3.
Alzheimers Dement ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889280

ABSTRACT

BACKGROUND: We investigated the effects of apolipoprotein E (APOE) ε4 and its interactions with sociodemographic characteristics on cognitive measures in South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD). METHODS: Linear regression was used to assess the association between APOE ε4 and global- and domain-specific cognitive function in 2563 participants (mean age 69.6 ± 7.3 years; 53% female). Effect modification by age, sex, and education were explored using interaction terms and subgroup analyses. RESULTS: APOE ε4 was inversely associated with most cognitive measures (p < 0.05). This association was stronger with advancing age for the Hindi Mental State Examination (HMSE) score (ßε4×age = -0.44, p = 0.03), orientation (ßε4×age = -0.07, p = 0.01), and language/fluency (ßε4×age = -0.07, p = 0.01), as well as in females for memory (ßε4×male = 0.17, p = 0.02) and language/fluency (ßε4×male = 0.12, p = 0.03). DISCUSSION: APOE Îµ4 is associated with lower cognitive function in South Asians from India, with a more pronounced impact observed in females and older individuals. HIGHLIGHTS: APOE Îµ4 carriers had lower global and domain-specific cognitive performance. Females and older individuals may be more susceptible to ε4 effects. For most cognitive measures, there was no interaction between ε4 and education.

4.
PLoS Biol ; 18(8): e3000838, 2020 08.
Article in English | MEDLINE | ID: mdl-32804933

ABSTRACT

In humans, most germline mutations are inherited from the father. This observation has been widely interpreted as reflecting the replication errors that accrue during spermatogenesis. If so, the male bias in mutation should be substantially lower in a closely related species with similar rates of spermatogonial stem cell divisions but a shorter mean age of reproduction. To test this hypothesis, we resequenced two 3-4 generation nuclear families (totaling 29 individuals) of olive baboons (Papio anubis), who reproduce at approximately 10 years of age on average, and analyzed the data in parallel with three 3-generation human pedigrees (26 individuals). We estimated a mutation rate per generation in baboons of 0.57×10-8 per base pair, approximately half that of humans. Strikingly, however, the degree of male bias in germline mutations is approximately 4:1, similar to that of humans-indeed, a similar male bias is seen across mammals that reproduce months, years, or decades after birth. These results mirror the finding in humans that the male mutation bias is stable with parental ages and cast further doubt on the assumption that germline mutations track cell divisions. Our mutation rate estimates for baboons raise a further puzzle, suggesting a divergence time between apes and Old World monkeys of 65 million years, too old to be consistent with the fossil record; reconciling them now requires not only a slowdown of the mutation rate per generation in humans but also in baboons.


Subject(s)
Germ-Line Mutation , Hominidae/genetics , Mutation Rate , Papio/genetics , Reproduction/genetics , Spermatozoa/metabolism , Age Factors , Animals , Biological Evolution , Cell Division , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Models, Genetic , Pedigree , Sex Factors , Species Specificity , Spermatogenesis/genetics , Spermatozoa/cytology
5.
Proc Natl Acad Sci U S A ; 116(19): 9491-9500, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31019089

ABSTRACT

The textbook view that most germline mutations in mammals arise from replication errors is indirectly supported by the fact that there are both more mutations and more cell divisions in the male than in the female germline. When analyzing large de novo mutation datasets in humans, we find multiple lines of evidence that call that view into question. Notably, despite the drastic increase in the ratio of male to female germ cell divisions after the onset of spermatogenesis, even young fathers contribute three times more mutations than young mothers, and this ratio barely increases with parental age. This surprising finding points to a substantial contribution of damage-induced mutations. Indeed, C-to-G transversions and CpG transitions, which together constitute over one-fourth of all base substitution mutations, show genomic distributions and sex-specific age dependencies indicative of double-strand break repair and methylation-associated damage, respectively. Moreover, we find evidence that maternal age at conception influences the mutation rate both because of the accumulation of damage in oocytes and potentially through an influence on the number of postzygotic mutations in the embryo. These findings reveal underappreciated roles of DNA damage and maternal age in the genesis of human germline mutations.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Databases, Nucleic Acid , Germ-Line Mutation , Maternal Age , Adolescent , Adult , Female , Humans , Male , Middle Aged , Oocytes , Pregnancy , Spermatogenesis/genetics
6.
Nature ; 514(7523): 445-9, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25341783

ABSTRACT

We present the high-quality genome sequence of a ∼45,000-year-old modern human male from Siberia. This individual derives from a population that lived before-or simultaneously with-the separation of the populations in western and eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating that Neanderthal gene flow into the ancestors of this individual occurred 7,000-13,000 years before he lived. We estimate an autosomal mutation rate of 0.4 × 10(-9) to 0.6 × 10(-9) per site per year, a Y chromosomal mutation rate of 0.7 × 10(-9) to 0.9 × 10(-9) per site per year based on the additional substitutions that have occurred in present-day non-Africans compared to this genome, and a mitochondrial mutation rate of 1.8 × 10(-8) to 3.2 × 10(-8) per site per year based on the age of the bone.


Subject(s)
Fossils , Genome, Human/genetics , Alleles , Animals , Chromosomes, Human, Pair 12/genetics , Diet , Evolution, Molecular , Humans , Hybridization, Genetic/genetics , Male , Molecular Sequence Data , Mutation Rate , Neanderthals/genetics , Phylogeny , Population Density , Population Dynamics , Principal Component Analysis , Sequence Analysis, DNA , Siberia
7.
Nature ; 505(7481): 43-9, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24352235

ABSTRACT

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Subject(s)
Fossils , Genome/genetics , Neanderthals/genetics , Africa , Animals , Caves , DNA Copy Number Variations/genetics , Female , Gene Flow/genetics , Gene Frequency , Heterozygote , Humans , Inbreeding , Models, Genetic , Neanderthals/classification , Phylogeny , Population Density , Siberia/ethnology , Toe Phalanges/anatomy & histology
8.
PLoS Biol ; 14(10): e2000744, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27760127

ABSTRACT

Our understanding of the chronology of human evolution relies on the "molecular clock" provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not "a mutation rate" but a precise characterization of how mutations accumulate in development in males and females-knowledge that remains elusive.


Subject(s)
Biological Evolution , Germ-Line Mutation , Mutation , Gene Conversion , Humans , Pedigree
9.
Proc Natl Acad Sci U S A ; 113(38): 10607-12, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601674

ABSTRACT

Events in primate evolution are often dated by assuming a constant rate of substitution per unit time, but the validity of this assumption remains unclear. Among mammals, it is well known that there exists substantial variation in yearly substitution rates. Such variation is to be expected from differences in life history traits, suggesting it should also be found among primates. Motivated by these considerations, we analyze whole genomes from 10 primate species, including Old World Monkeys (OWMs), New World Monkeys (NWMs), and apes, focusing on putatively neutral autosomal sites and controlling for possible effects of biased gene conversion and methylation at CpG sites. We find that substitution rates are up to 64% higher in lineages leading from the hominoid-NWM ancestor to NWMs than to apes. Within apes, rates are ∼2% higher in chimpanzees and ∼7% higher in the gorilla than in humans. Substitution types subject to biased gene conversion show no more variation among species than those not subject to it. Not all mutation types behave similarly, however; in particular, transitions at CpG sites exhibit a more clocklike behavior than do other types, presumably because of their nonreplicative origin. Thus, not only the total rate, but also the mutational spectrum, varies among primates. This finding suggests that events in primate evolution are most reliably dated using CpG transitions. Taking this approach, we estimate the human and chimpanzee divergence time is 12.1 million years,​ and the human and gorilla divergence time is 15.1 million years​.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome/genetics , Primates/genetics , Amino Acid Substitution/genetics , Animals , Biological Evolution , DNA Methylation/genetics , Gene Conversion/genetics , Gorilla gorilla/genetics , Humans , Pan troglodytes/genetics
10.
Proc Natl Acad Sci U S A ; 113(20): 5652-7, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27140627

ABSTRACT

The study of human evolution has been revolutionized by inferences from ancient DNA analyses. Key to these studies is the reliable estimation of the age of ancient specimens. High-resolution age estimates can often be obtained using radiocarbon dating, and, while precise and powerful, this method has some biases, making it of interest to directly use genetic data to infer a date for samples that have been sequenced. Here, we report a genetic method that uses the recombination clock. The idea is that an ancient genome has evolved less than the genomes of present-day individuals and thus has experienced fewer recombination events since the common ancestor. To implement this idea, we take advantage of the insight that all non-Africans have a common heritage of Neanderthal gene flow into their ancestors. Thus, we can estimate the date since Neanderthal admixture for present-day and ancient samples simultaneously and use the difference as a direct estimate of the ancient specimen's age. We apply our method to date five Upper Paleolithic Eurasian genomes with radiocarbon dates between 12,000 and 45,000 y ago and show an excellent correlation of the genetic and (14)C dates. By considering the slope of the correlation between the genetic dates, which are in units of generations, and the (14)C dates, which are in units of years, we infer that the mean generation interval in humans over this period has been 26-30 y. Extensions of this methodology that use older shared events may be applicable for dating beyond the radiocarbon frontier.


Subject(s)
Biological Evolution , Genetic Techniques , Genome, Human , Neanderthals/genetics , Radiometric Dating/methods , Animals , Humans , Polymorphism, Single Nucleotide
11.
Am J Hum Genet ; 93(3): 422-38, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23932107

ABSTRACT

Most Indian groups descend from a mixture of two genetically divergent populations: Ancestral North Indians (ANI) related to Central Asians, Middle Easterners, Caucasians, and Europeans; and Ancestral South Indians (ASI) not closely related to groups outside the subcontinent. The date of mixture is unknown but has implications for understanding Indian history. We report genome-wide data from 73 groups from the Indian subcontinent and analyze linkage disequilibrium to estimate ANI-ASI mixture dates ranging from about 1,900 to 4,200 years ago. In a subset of groups, 100% of the mixture is consistent with having occurred during this period. These results show that India experienced a demographic transformation several thousand years ago, from a region in which major population mixture was common to one in which mixture even between closely related groups became rare because of a shift to endogamy.


Subject(s)
Gene Pool , Genetics, Population , Geography , Humans , India , Linguistics , Linkage Disequilibrium/genetics , Models, Genetic , Principal Component Analysis , Time Factors , White People/genetics
12.
Nature ; 463(7283): 943-7, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20164927

ABSTRACT

The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial and small sets of nuclear markers have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans. However, until now, fully sequenced human genomes have been limited to recently diverged populations. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.


Subject(s)
Black People/genetics , Ethnicity/genetics , Genome, Human/genetics , Asian People/genetics , Exons/genetics , Genetics, Medical , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics , South Africa/ethnology , White People/genetics
13.
PLoS Genet ; 9(2): e1003316, 2013.
Article in English | MEDLINE | ID: mdl-23468648

ABSTRACT

The Levant is a region in the Near East with an impressive record of continuous human existence and major cultural developments since the Paleolithic period. Genetic and archeological studies present solid evidence placing the Middle East and the Arabian Peninsula as the first stepping-stone outside Africa. There is, however, little understanding of demographic changes in the Middle East, particularly the Levant, after the first Out-of-Africa expansion and how the Levantine peoples relate genetically to each other and to their neighbors. In this study we analyze more than 500,000 genome-wide SNPs in 1,341 new samples from the Levant and compare them to samples from 48 populations worldwide. Our results show recent genetic stratifications in the Levant are driven by the religious affiliations of the populations within the region. Cultural changes within the last two millennia appear to have facilitated/maintained admixture between culturally similar populations from the Levant, Arabian Peninsula, and Africa. The same cultural changes seem to have resulted in genetic isolation of other groups by limiting admixture with culturally different neighboring populations. Consequently, Levant populations today fall into two main groups: one sharing more genetic characteristics with modern-day Europeans and Central Asians, and the other with closer genetic affinities to other Middle Easterners and Africans. Finally, we identify a putative Levantine ancestral component that diverged from other Middle Easterners ∼23,700-15,500 years ago during the last glacial period, and diverged from Europeans ∼15,900-9,100 years ago between the last glacial warming and the start of the Neolithic.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Archaeology , Black People , Cultural Evolution , Ethnicity/genetics , Genome, Human , Haplotypes , Humans , Middle East , Phylogeny , White People
14.
Am J Hum Genet ; 89(1): 154-61, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21741027

ABSTRACT

The Siddis (Afro-Indians) are a tribal population whose members live in coastal Karnataka, Gujarat, and in some parts of Andhra Pradesh. Historical records indicate that the Portuguese brought the Siddis to India from Africa about 300-500 years ago; however, there is little information about their more precise ancestral origins. Here, we perform a genome-wide survey to understand the population history of the Siddis. Using hundreds of thousands of autosomal markers, we show that they have inherited ancestry from Africans, Indians, and possibly Europeans (Portuguese). Additionally, analyses of the uniparental (Y-chromosomal and mitochondrial DNA) markers indicate that the Siddis trace their ancestry to Bantu speakers from sub-Saharan Africa. We estimate that the admixture between the African ancestors of the Siddis and neighboring South Asian groups probably occurred in the past eight generations (∼200 years ago), consistent with historical records.


Subject(s)
Black People/genetics , Genetics, Population/statistics & numerical data , White People/genetics , Africa South of the Sahara , Alleles , Asian People/genetics , Chromosomes, Human, Y , DNA, Mitochondrial , Gene Frequency , Genetic Markers , Genetic Variation , Haplotypes , Humans , India , Molecular Sequence Data , Pedigree
15.
PLoS Genet ; 7(4): e1001373, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533020

ABSTRACT

Previous genetic studies have suggested a history of sub-Saharan African gene flow into some West Eurasian populations after the initial dispersal out of Africa that occurred at least 45,000 years ago. However, there has been no accurate characterization of the proportion of mixture, or of its date. We analyze genome-wide polymorphism data from about 40 West Eurasian groups to show that almost all Southern Europeans have inherited 1%-3% African ancestry with an average mixture date of around 55 generations ago, consistent with North African gene flow at the end of the Roman Empire and subsequent Arab migrations. Levantine groups harbor 4%-15% African ancestry with an average mixture date of about 32 generations ago, consistent with close political, economic, and cultural links with Egypt in the late middle ages. We also detect 3%-5% sub-Saharan African ancestry in all eight of the diverse Jewish populations that we analyzed. For the Jewish admixture, we obtain an average estimated date of about 72 generations. This may reflect descent of these groups from a common ancestral population that already had some African ancestry prior to the Jewish Diasporas.


Subject(s)
Black People/genetics , Ethnicity/genetics , Gene Flow , Genome, Human , Jews/genetics , Asian People , Chromosomes/genetics , Emigration and Immigration , Gene Pool , Genetic Variation , Genetics, Population , Haplotypes , Humans , Polymorphism, Single Nucleotide , White People
16.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798350

ABSTRACT

Gene flow from Neandertals has shaped the landscape of genetic and phenotypic variation in modern humans. We identify the location and size of introgressed Neandertal ancestry segments in more than 300 genomes spanning the last 50,000 years. We study how Neandertal ancestry is shared among individuals to infer the time and duration of the Neandertal gene flow. We find the correlation of Neandertal segment locations across individuals and their divergence to sequenced Neandertals, both support a model of single major Neandertal gene flow. Our catalog of introgressed segments through time confirms that most natural selection-positive and negative-on Neandertal ancestry variants occurred immediately after the gene flow, and provides new insights into how the contact with Neandertals shaped human origins and adaptation.

17.
medRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293024

ABSTRACT

The prevalence of dementia among South Asians across India is approximately 7.4% in those 60 years and older, yet little is known about genetic risk factors for dementia in this population. Most known risk loci for Alzheimer's disease (AD) have been identified from studies conducted in European Ancestry (EA) but are unknown in South Asians. Using whole-genome sequence data from 2680 participants from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD), we performed a gene-based analysis of 84 genes previously associated with AD in EA. We investigated associations with the Hindi Mental State Examination (HMSE) score and factor scores for general cognitive function and five cognitive domains. For each gene, we examined missense/loss-of-function (LoF) variants and brain-specific promoter/enhancer variants, separately, both with and without incorporating additional annotation weights (e.g., deleteriousness, conservation scores) using the variant-Set Test for Association using Annotation infoRmation (STAAR). In the missense/LoF analysis without annotation weights and controlling for age, sex, state/territory, and genetic ancestry, three genes had an association with at least one measure of cognitive function (FDR q<0.1). APOE was associated with four measures of cognitive function, PICALM was associated with HMSE score, and TSPOAP1 was associated with executive function. The most strongly associated variants in each gene were rs429358 (APOE ε4), rs779406084 (PICALM), and rs9913145 (TSPOAP1). rs779406084 is a rare missense mutation that is more prevalent in LASI-DAD than in EA (minor allele frequency=0.075% vs. 0.0015%); the other two are common variants. No genes in the brain-specific promoter/enhancer analysis met criteria for significance. Results with and without annotation weights were similar. Missense/LoF variants in some genes previously associated with AD in EA are associated with measures of cognitive function in South Asians from India. Analyzing genome sequence data allows identification of potential novel causal variants enriched in South Asians.

18.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38405782

ABSTRACT

India has been underrepresented in whole genome sequencing studies. We generated 2,762 high coverage genomes from India-including individuals from most geographic regions, speakers of all major languages, and tribal and caste groups-providing a comprehensive survey of genetic variation in India. With these data, we reconstruct the evolutionary history of India through space and time at fine scales. We show that most Indians derive ancestry from three ancestral groups related to ancient Iranian farmers, Eurasian Steppe pastoralists and South Asian hunter-gatherers. We uncover a common source of Iranian-related ancestry from early Neolithic cultures of Central Asia into the ancestors of Ancestral South Indians (ASI), Ancestral North Indians (ANI), Austro-asiatic-related and East Asian-related groups in India. Following these admixtures, India experienced a major demographic shift towards endogamy, resulting in extensive homozygosity and identity-by-descent sharing among individuals. At deep time scales, Indians derive around 1-2% of their ancestry from gene flow from archaic hominins, Neanderthals and Denisovans. By assembling the surviving fragments of archaic ancestry in modern Indians, we recover ~1.5 Gb (or 50%) of the introgressing Neanderthal and ~0.6 Gb (or 20%) of the introgressing Denisovan genomes, more than any other previous archaic ancestry study. Moreover, Indians have the largest variation in Neanderthal ancestry, as well as the highest amount of population-specific Neanderthal segments among worldwide groups. Finally, we demonstrate that most of the genetic variation in Indians stems from a single major migration out of Africa that occurred around 50,000 years ago, with minimal contribution from earlier migration waves. Together, these analyses provide a detailed view of the population history of India and underscore the value of expanding genomic surveys to diverse groups outside Europe.

19.
Elife ; 122023 02 13.
Article in English | MEDLINE | ID: mdl-36779395

ABSTRACT

Recent studies have suggested that the human germline mutation rate and spectrum evolve rapidly. Variation in generation time has been linked to these changes, though its contribution remains unclear. We develop a framework to characterize temporal changes in polymorphisms within and between populations, while controlling for the effects of natural selection and biased gene conversion. Application to the 1000 Genomes Project dataset reveals multiple independent changes that arose after the split of continental groups, including a previously reported, transient elevation in TCC>TTC mutations in Europeans and novel signals of divergence in C>Gand T>A mutation rates among population samples. We also find a significant difference between groups sampled in and outside of Africa in old T>C polymorphisms that predate the out-of-Africa migration. This surprising signal is driven by TpG>CpG mutations and stems in part from mis-polarized CpG transitions, which are more likely to undergo recurrent mutations. Finally, by relating the mutation spectrum of polymorphisms to parental age effects on de novo mutations, we show that plausible changes in the generation time cannot explain the patterns observed for different mutation types jointly. Thus, other factors - genetic modifiers or environmental exposures - must have had a non-negligible impact on the human mutation landscape.


Each human has 23 pairs of chromosomes, one set inherited from each parent. But the child's chromosomes are not an exact copy of their parents' chromosomes. Spontaneous changes or mutations in the DNA during the formation of the egg or sperm cells, or early development of the embryo, can change a small fraction of the nucleotides or 'letters' that make up the DNA. These modifications are an important source of genetic diversity in human populations and contribute to the evolution of new traits. Each genetic variant in present-day human populations represents a mutation in one of their ancestors. The types and frequencies of variants vary across human populations and have changed over time, suggesting that mutation patterns have evolved in the past. But the processes driving these population-level differences remain elusive. One possible factor may be changes in the average age of reproduction or the generation time in a population . For example, older parents contribute more ­ and also different types of ­ new mutations to their children than younger parents do. Populations, where it is customary to have children at older ages, may therefore have a different mutation landscape. To find out if this is indeed the case, Gao et al. used computer algorithms to analyze the genomes of hundreds of people living on three continents who participated in 'the 1,000 Genomes Project'. The analysis identified differences in mutation patterns across continental groups and estimated when these changes occurred. Further, they showed that although the age of reproduction had an impact on the mutation landscape, differences in generation time alone could not explain the observed changes in the human mutation spectrum. Factors other than generation time, such as environmental exposures, may have played a role in shifting these patterns. The study provides new insights into the changes in the mutation landscape over the course of human evolution. Mapping these patterns in humans worldwide may help scientists understand the causes underlying these changes. The techniques used by Gao et al. may also help analyze changes in mutation patterns in other organisms.


Subject(s)
Germ-Line Mutation , Mutation Rate , Humans , Mutation , Genome , Selection, Genetic
20.
J Gerontol A Biol Sci Med Sci ; 78(5): 743-752, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36782352

ABSTRACT

Genome-wide association studies (GWAS) conducted in European ancestry (EA) have identified hundreds of single-nucleotide polymorphisms (SNPs) associated with general cognitive function and/or Alzheimer's disease (AD). The association between these SNPs and cognitive function has not been fully evaluated in populations with complex genetic substructure such as South Asians. This study investigated whether SNPs identified in EA GWAS, either individually or as polygenic risk scores (PRSs), were associated with general cognitive function and 5 broad cognitive domains in 932 South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD). We found that SNPs identified from AD GWAS were more strongly associated with cognitive function in LASI-DAD than those from a GWAS of general cognitive function. PRSs for general cognitive function and AD explained up to 1.1% of the variability in LASI-DAD cognitive domain scores. Our study represents an important stepping stone toward better characterization of the genetic architecture of cognitive aging in the Indian/South Asian population and highlights the need for further research that may lead to the identification of new variants unique to this population.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Genome-Wide Association Study , South Asian People , Cognition , Risk Factors , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
SELECTION OF CITATIONS
SEARCH DETAIL