Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add more filters

Publication year range
1.
Cell ; 187(3): 659-675.e18, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38215760

ABSTRACT

The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.


Subject(s)
Caenorhabditis elegans , Electron Transport Complex I , Hypoxia , Animals , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Electron Transport Complex I/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Oxygen/metabolism
2.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32259488

ABSTRACT

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.


Subject(s)
Lipid Metabolism/genetics , Mitochondria/genetics , Oxygen/metabolism , Transcriptome/genetics , Cell Hypoxia , Genetic Testing/methods , Genome-Wide Association Study/methods , HEK293 Cells , Humans , Hypoxia/metabolism , K562 Cells , Lipid Metabolism/physiology , Lipids/genetics , Lipids/physiology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/physiology
3.
Cell ; 177(6): 1507-1521.e16, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31031004

ABSTRACT

Friedreich's ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.


Subject(s)
Hypoxia/metabolism , Iron-Binding Proteins/metabolism , Iron-Sulfur Proteins/metabolism , Activating Transcription Factor 4/metabolism , Animals , Caenorhabditis elegans/metabolism , Female , Friedreich Ataxia/metabolism , HEK293 Cells , Humans , Hypoxia/physiopathology , Iron/metabolism , Iron Regulatory Protein 2/metabolism , Iron-Binding Proteins/physiology , Iron-Sulfur Proteins/physiology , K562 Cells , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Saccharomyces cerevisiae/metabolism , Sulfur/metabolism , Frataxin
4.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730859

ABSTRACT

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Subject(s)
Genes, Modifier , Mitochondria/genetics , Mitochondria/pathology , Autoantigens/metabolism , Cell Death/drug effects , Cytosol/drug effects , Cytosol/metabolism , Electron Transport Complex I/metabolism , Epistasis, Genetic/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Genome , Glutathione Peroxidase/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Humans , K562 Cells , Mitochondria/drug effects , Oligomycins/toxicity , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Pentose Phosphate Pathway/drug effects , Pentose Phosphate Pathway/genetics , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , SS-B Antigen
5.
Cell ; 171(4): 771-782.e11, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29056341

ABSTRACT

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Subject(s)
Carbon-Carbon Lyases/metabolism , Succinates/metabolism , Vitamin B 12/metabolism , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/genetics , Gene Knockout Techniques , Humans , Metabolic Networks and Pathways , Mitochondria/metabolism , Models, Molecular
6.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38199006

ABSTRACT

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Subject(s)
Friedreich Ataxia , Iron-Sulfur Proteins , Humans , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Cryoelectron Microscopy , Frataxin , Protein Biosynthesis , Mitochondria/genetics , Mitochondria/metabolism , Friedreich Ataxia/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
7.
Nature ; 629(8011): 458-466, 2024 May.
Article in English | MEDLINE | ID: mdl-38658765

ABSTRACT

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Subject(s)
Cell Division , Cell Lineage , DNA, Mitochondrial , Genetic Fitness , Heteroplasmy , Selection, Genetic , Single-Cell Analysis , Animals , Female , Humans , Mice , Cell Division/genetics , Cell Line , Cell Lineage/genetics , DNA, Mitochondrial/genetics , Gene Editing , Heteroplasmy/genetics , Mitochondria/genetics , Mutation , Single-Cell Analysis/methods
8.
Cell ; 158(1): 213-25, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24995987

ABSTRACT

The availability of diverse genomes makes it possible to predict gene function based on shared evolutionary history. This approach can be challenging, however, for pathways whose components do not exhibit a shared history but rather consist of distinct "evolutionary modules." We introduce a computational algorithm, clustering by inferred models of evolution (CLIME), which inputs a eukaryotic species tree, homology matrix, and pathway (gene set) of interest. CLIME partitions the gene set into disjoint evolutionary modules, simultaneously learning the number of modules and a tree-based evolutionary history that defines each module. CLIME then expands each module by scanning the genome for new components that likely arose under the inferred evolutionary model. Application of CLIME to ∼1,000 annotated human pathways and to the proteomes of yeast, red algae, and malaria reveals unanticipated evolutionary modularity and coevolving components. CLIME is freely available and should become increasingly powerful with the growing wealth of eukaryotic genomes.


Subject(s)
Algorithms , Cluster Analysis , Phylogeny , Humans , Mitochondria/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Proteome/analysis , Rhodophyta/genetics , Rhodophyta/metabolism , Signal Transduction , Yeasts/genetics , Yeasts/metabolism
9.
Nature ; 620(7975): 839-848, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587338

ABSTRACT

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.


Subject(s)
Cell Nucleus , DNA Copy Number Variations , DNA, Mitochondrial , Heteroplasmy , Mitochondria , Aged , Humans , DNA Copy Number Variations/genetics , DNA, Mitochondrial/genetics , Genome-Wide Association Study , Heteroplasmy/genetics , Mitochondria/genetics , Cell Nucleus/genetics , Alleles , Polymorphism, Single Nucleotide , INDEL Mutation , G-Quadruplexes
10.
Mol Cell ; 81(9): 1905-1919.e12, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33852893

ABSTRACT

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Subject(s)
Glycolysis , Oxidative Phosphorylation , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Glutamic Acid/metabolism , Glycogen/metabolism , Glycolysis/genetics , HEK293 Cells , HeLa Cells , Humans , K562 Cells , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Phosphofructokinase-1, Muscle Type/genetics , Phosphofructokinase-1, Muscle Type/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics
11.
Cell ; 155(1): 21-6, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074858

ABSTRACT

Technologies for genome-wide sequence interrogation have dramatically improved our ability to identify loci associated with complex human disease. However, a chasm remains between correlations and causality that stems, in part, from a limiting theoretical framework derived from Mendelian genetics and an incomplete understanding of disease physiology. Here we propose a set of criteria, akin to Koch's postulates for infectious disease, for assigning causality between genetic variants and human disease phenotypes.


Subject(s)
Disease/genetics , Genomics/methods , Phenotype , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Causality , Genetic Variation , Humans , Multifactorial Inheritance
12.
Nat Rev Mol Cell Biol ; 16(9): 545-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26285678

ABSTRACT

The mitochondrial calcium uniporter is an evolutionarily conserved calcium channel, and its biophysical properties and relevance to cell death, bioenergetics and signalling have been investigated for decades. However, the genes encoding this channel have only recently been discovered, opening up a new 'molecular era' in the study of its biology. We now know that the uniporter is not a single protein but rather a macromolecular complex consisting of pore-forming and regulatory subunits. We review recent studies that harnessed the power of molecular biology and genetics to characterize the mechanism of action of the uniporter, its evolution and its contribution to physiology and human disease.


Subject(s)
Calcium Channels/physiology , Animals , Calcium Channels/chemistry , Calcium Signaling , Feedback, Physiological , Humans , Models, Molecular
13.
Cell ; 151(1): 96-110, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23021218

ABSTRACT

PGC1α is a key transcriptional coregulator of oxidative metabolism and thermogenesis. Through a high-throughput chemical screen, we found that molecules antagonizing the TRPVs (transient receptor potential vanilloid), a family of ion channels, induced PGC1α expression in adipocytes. In particular, TRPV4 negatively regulated the expression of PGC1α, UCP1, and cellular respiration. Additionally, it potently controlled the expression of multiple proinflammatory genes involved in the development of insulin resistance. Mice with a null mutation for TRPV4 or wild-type mice treated with a TRPV4 antagonist showed elevated thermogenesis in adipose tissues and were protected from diet-induced obesity, adipose inflammation, and insulin resistance. This role of TRPV4 as a cell-autonomous mediator for both the thermogenic and proinflammatory programs in adipocytes could offer a target for treating obesity and related metabolic diseases.


Subject(s)
Energy Metabolism , TRPV Cation Channels/metabolism , Thermogenesis , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Female , Gene Knockdown Techniques , Ion Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics , Trans-Activators/metabolism , Transcription Factors , Uncoupling Protein 1
14.
PLoS Biol ; 21(5): e3002117, 2023 05.
Article in English | MEDLINE | ID: mdl-37220109

ABSTRACT

There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.


Subject(s)
Longevity , Nervous System Physiological Phenomena , Animals , Mice , Aging , Hypoxia , Oxygen , Disease Models, Animal , Drosophila , Saccharomyces cerevisiae , Mammals
15.
Nature ; 583(7817): 631-637, 2020 07.
Article in English | MEDLINE | ID: mdl-32641830

ABSTRACT

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Subject(s)
Bacterial Toxins/metabolism , Cytidine Deaminase/metabolism , DNA, Mitochondrial/genetics , Gene Editing/methods , Genes, Mitochondrial/genetics , Mitochondria/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Base Sequence , Burkholderia cenocepacia/enzymology , Burkholderia cenocepacia/genetics , Cell Respiration/genetics , Cytidine/metabolism , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , Genome, Mitochondrial/genetics , HEK293 Cells , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mutation , Oxidative Phosphorylation , Protein Engineering , RNA, Guide, Kinetoplastida/genetics , Substrate Specificity , Type VI Secretion Systems/metabolism
16.
Nature ; 583(7814): 122-126, 2020 07.
Article in English | MEDLINE | ID: mdl-32461692

ABSTRACT

The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.


Subject(s)
Liver/metabolism , NAD/metabolism , Stress, Physiological , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytosol/metabolism , Disease Models, Animal , Fibroblast Growth Factors/blood , Genetic Variation , Glucose Tolerance Test , Humans , Insulin Resistance , Levilactobacillus brevis/enzymology , Levilactobacillus brevis/genetics , Male , Mice , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction , Triglycerides/blood
17.
Hum Mol Genet ; 32(16): 2600-2610, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37260376

ABSTRACT

Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.


Subject(s)
Friedreich Ataxia , Neurodegenerative Diseases , Polycythemia , Humans , Mice , Animals , Friedreich Ataxia/genetics , Disease Models, Animal , Hypoxia , Oxygen , Ataxia
18.
Hum Mol Genet ; 32(15): 2441-2454, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37133451

ABSTRACT

MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , Leigh Disease/genetics , Leigh Disease/pathology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Multiomics , Mutation , Ribosomal Proteins/genetics
19.
N Engl J Med ; 387(15): 1395-1403, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36239646

ABSTRACT

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the ß subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Subject(s)
Mitochondrial Diseases , Mitochondrial Proton-Translocating ATPases , Oxidative Phosphorylation , Oxygen Consumption , Humans , Male , Adenosine Triphosphate/metabolism , Diseases in Twins/genetics , Diseases in Twins/metabolism , Fibroblasts/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/congenital , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mutation , Oxygen Consumption/genetics , Oxygen Consumption/physiology , Twins, Monozygotic/genetics
20.
Genome Res ; 32(3): 569-582, 2022 03.
Article in English | MEDLINE | ID: mdl-35074858

ABSTRACT

Genomic databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; however, until now, databases such as the Genome Aggregation Database (gnomAD) have focused on nuclear DNA and have ignored the mitochondrial genome (mtDNA). Here, we present a pipeline to call mtDNA variants that addresses three technical challenges: (1) detecting homoplasmic and heteroplasmic variants, present, respectively, in all or a fraction of mtDNA molecules; (2) circular mtDNA genome; and (3) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we excluded contaminated samples, cell lines, and samples prone to NUMT misalignment due to few mtDNA copies. Furthermore, we report variants with heteroplasmy ≥10%. We applied this pipeline to 56,434 whole-genome sequences in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian (5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more than half of all mtDNA bases. Importantly, we report frequencies within each nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mtDNA population allele frequencies are freely accessible and will aid in diagnostic interpretation and research studies.


Subject(s)
DNA, Mitochondrial , Genome, Mitochondrial , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Gene Frequency , Genome , Humans , Mitochondria/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL