Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Foods ; 13(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275714

ABSTRACT

Recent studies have linked phenolic compounds to the inhibition of digestive enzymes. Propolis extract is consumed or applied as a traditional treatment for some diseases. More than 500 chemical compounds have been identified in propolis composition worldwide. This research aimed to determine Mexican propolis extracts' total phenolic content, total flavonoid content, antioxidant activity, and digestive enzyme inhibitory activity (ɑ-amylase and ɑ-glucosidase). In vitro assays measured the possible effect on bioactive compounds after digestion. Four samples of propolis from different regions of the state of Oaxaca (Mexico) were tested (Eloxochitlán (PE), Teotitlán (PT), San Pedro (PSP), and San Jerónimo (PSJ)). Ethanol extractions were performed using ultrasound. The extract with the highest phenolic content was PE with 15,362.4 ± 225 mg GAE/100 g. Regarding the flavonoid content, the highest amount was found in PT with 8084.6 ± 19 mg QE/100 g. ABTS•+ and DPPH• radicals were evaluated. The extract with the best inhibition concentration was PE with 33,307.1 ± 567 mg ET/100 g. After simulated digestion, phenolics, flavonoids, and antioxidant activity decreased by 96%. In contrast, antidiabetic activity, quantified as inhibition of ɑ-amylase and ɑ-glucosidase, showed a mean decrease in enzyme activity of approximately 50% after the intestinal phase. Therefore, it is concluded that propolis extracts could be a natural alternative for treating diabetes, and it would be necessary to develop a protective mechanism to incorporate them into foods.

2.
Mycopathologia ; 163(1): 31-9, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17216329

ABSTRACT

Fusarium proliferatum, F. subglutinans, and F. verticillioides are known causes of ear and kernel rot in maize worldwide. In Mexico, only F. verticillioides and F. subglutinans, have been reported previously as causal agents of this disease. However, Fusarium isolates with different morphological characteristics to the species that are known to cause this disease were obtained in the Highland-Valley region of this country from symptomatic and symptomless ears of native and commercial maize genotypes. Moreover, while the morphological studies were not sufficient to identify the correct taxonomic position at the species level, analyses based in the Internal Transcribed Spacer region and the Nuclear Large Subunit Ribosomal partial sequences allowed for the identification of F. subglutinans, F. solani, and F. verticillioides, as well as four species (F. chlamydosporum, F. napiforme, F. poae, and F. pseudonygamai) that had not previously been reported to be associated with ear rot. In addition, F. napiforme and F. solani were absent from symptomless kernels. Phylogenetic analysis showed genetic changes in F. napiforme, and F. pseudonygamai isolates because they were not true clones, and probably constitute separate sibling species. The results of this study suggest that the biodiversity of Fusarium species involved in ear rot in Mexico is greater than that reported previously in other places in the world. This new knowledge will permit a better understanding of the relationship between all the species involved in ear rot disease and their relationship with maize.


Subject(s)
Biodiversity , Fusarium/classification , Plant Diseases/microbiology , Zea mays/microbiology , Base Sequence , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fusarium/genetics , Fusarium/isolation & purification , Mexico , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 28S/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL