Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Publication year range
1.
Immunity ; 56(6): 1376-1392.e8, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37164013

ABSTRACT

Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.


Subject(s)
Antibodies , Bacteriophages , Humans , Antigens , Epitopes/genetics , Peptides
2.
Genes Dev ; 37(21-24): 945-947, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38092520

ABSTRACT

RNA helicases orchestrate proofreading mechanisms that facilitate accurate intron removal from pre-mRNAs. How these activities are recruited to spliceosome/pre-mRNA complexes remains poorly understood. In this issue of Genes & Development, Zhang and colleagues (pp. 968-983) combine biochemical experiments with AI-based structure prediction methods to generate a model for the interaction between SF3B1, a core splicing factor essential for the recognition of the intron branchpoint, and SUGP1, a protein that bridges SF3B1 with the helicase DHX15. Interaction with SF3B1 exposes the G-patch domain of SUGP1, facilitating binding to and activation of DHX15. The model can explain the activation of cryptic 3' splice sites induced by mutations in SF3B1 or SUGP1 frequently found in cancer.


Subject(s)
RNA Splicing , Spliceosomes , RNA Splicing/genetics , Spliceosomes/genetics , Spliceosomes/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA Splice Sites , RNA Precursors/genetics , RNA Precursors/metabolism , Artificial Intelligence , Mutation , Phosphoproteins/metabolism
3.
Nature ; 625(7996): 813-821, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172637

ABSTRACT

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Host Microbial Interactions , Metagenome , Humans , Acetylgalactosamine/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cohort Studies , Computer Simulation , Faecalibacterium prausnitzii/genetics , Gastrointestinal Microbiome/genetics , Genome, Human/genetics , Genotype , Host Microbial Interactions/genetics , In Vitro Techniques , Metagenome/genetics , Multigene Family , Netherlands , Tanzania
4.
Nucleic Acids Res ; 51(D1): D1558-D1567, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36420904

ABSTRACT

The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.


Subject(s)
Bacteria , Databases, Factual , Bacteria/genetics , Cloning, Molecular , DNA , Genetic Vectors , Phenotype , Plasmids/genetics
5.
J Clin Microbiol ; 62(5): e0039424, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38602412

ABSTRACT

Aspergillus species and Mucorales agents are the primary etiologies of invasive fungal disease (IFD). Biomarkers that predict outcomes are needed to improve care. Patients diagnosed with invasive aspergillosis and mucormycosis using plasma cell-free DNA (cfDNA) PCR were retested weekly for 4 weeks. The primary outcome included all-cause mortality at 6 weeks and 6 months based on baseline cycle threshold (CT) values and results of follow-up cfDNA PCR testing. Forty-five patients with Aspergillus and 30 with invasive Mucorales infection were retested weekly for a total of 197 tests. Using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium (EORTC/MSG) criteria, 30.7% (23/75), 25.3% (19/75), and 38.7% (29/75) had proven, probable, and possible IFD, respectively. In addition, 97.3% (73/75) were immunocompromised. Baseline CT increased significantly starting at week 1 for Mucorales and week 2 for Aspergillus. Aspergillosis and mucormycosis patients with higher baseline CT (CT >40 and >35, respectively) had a nonsignificantly higher survival rate at 6 weeks, compared with patients with lower baseline CT. Mucormycosis patients with higher baseline CT had a significantly higher survival rate at 6 months. Mucormycosis, but not aspergillosis patients, with repeat positive cfDNA PCR results had a nonsignificantly lower survival rate at 6 weeks and 6 months compared with patients who reverted to negative. Aspergillosis patients with baseline serum Aspergillus galactomannan index <0.5 and <1.0 had significantly higher survival rates at 6 weeks when compared with those with index ≥0.5 and ≥1.0, respectively. Baseline plasma cfDNA PCR CT can potentially be used to prognosticate survival in patients with invasive Aspergillus and Mucorales infections. IMPORTANCE: We show that Aspergillus and Mucorales plasma cell-free DNA PCR can be used not only to noninvasively diagnose patients with invasive fungal disease but also to correlate the baseline cycle threshold with survival outcomes, thus potentially allowing the identification of patients at risk for poor outcomes, who may benefit from more targeted therapies.


Subject(s)
Cell-Free Nucleic Acids , DNA, Fungal , Invasive Fungal Infections , Mucormycosis , Polymerase Chain Reaction , Humans , Mucormycosis/diagnosis , Mucormycosis/mortality , Mucormycosis/blood , Mucormycosis/microbiology , Male , Female , Middle Aged , Prognosis , Aged , Cell-Free Nucleic Acids/blood , Polymerase Chain Reaction/methods , Adult , DNA, Fungal/genetics , DNA, Fungal/blood , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/mortality , Invasive Fungal Infections/microbiology , Aspergillus/genetics , Aspergillus/isolation & purification , Aspergillosis/diagnosis , Aspergillosis/mortality , Aspergillosis/microbiology , Mucorales/genetics , Mucorales/isolation & purification , Biomarkers/blood , Aged, 80 and over , Prospective Studies
6.
Blood ; 140(11): 1291-1304, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35763665

ABSTRACT

Calreticulin (CALR) mutations are frequent, disease-initiating events in myeloproliferative neoplasms (MPNs). Although the biological mechanism by which CALR mutations cause MPNs has been elucidated, there currently are no clonally selective therapies for CALR-mutant MPNs. To identify unique genetic dependencies in CALR-mutant MPNs, we performed a whole-genome clustered regularly interspaced short palindromic repeats (CRISPR) knockout depletion screen in mutant CALR-transformed hematopoietic cells. We found that genes in the N-glycosylation pathway (among others) were differentially depleted in mutant CALR-transformed cells as compared with control cells. Using a focused pharmacological in vitro screen targeting unique vulnerabilities uncovered in the CRISPR screen, we found that chemical inhibition of N-glycosylation impaired the growth of mutant CALR-transformed cells, through a reduction in MPL cell surface expression. We treated Calr-mutant knockin mice with the N-glycosylation inhibitor 2-deoxy-glucose (2-DG) and found a preferential sensitivity of Calr-mutant cells to 2-DG as compared with wild-type cells and normalization of key MPNs disease features. To validate our findings in primary human cells, we performed megakaryocyte colony-forming unit (CFU-MK) assays. We found that N-glycosylation inhibition significantly reduced CFU-MK formation in patient-derived CALR-mutant bone marrow as compared with bone marrow derived from healthy donors. In aggregate, our findings advance the development of clonally selective treatments for CALR-mutant MPNs.


Subject(s)
Calreticulin , Myeloproliferative Disorders , Animals , Calreticulin/genetics , Calreticulin/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Glucose , Glycosylation , Humans , Janus Kinase 2/genetics , Mice , Mutation , Myeloproliferative Disorders/genetics , Receptors, Thrombopoietin/metabolism
7.
J Chem Inf Model ; 64(6): 1984-1995, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38472094

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated from the viral genome and is critical for viral replication. Mpro is a target for anti-SARS-CoV-2 drug development, and multiple Mpro crystals complexed with competitive inhibitors have been reported. In this study, we aimed to develop an Mpro consensus pharmacophore as a tool to expand the search for inhibitors. We generated a consensus model by aligning and summarizing pharmacophoric points from 152 bioactive conformers of SARS-CoV-2 Mpro inhibitors. Validation against a library of conformers from a subset of ligands showed that our model retrieved poses that reproduced the crystal-binding mode in 77% of the cases. Using models derived from a consensus pharmacophore, we screened >340 million compounds. Pharmacophore-matching and chemoinformatics analyses identified new potential Mpro inhibitors. The candidate compounds were chemically dissimilar to the reference set, and among them, demonstrating the relevance of our model. We evaluated the effect of 16 candidates on Mpro enzymatic activity finding that seven have inhibitory activity. Three compounds (1, 4, and 5) had IC50 values in the midmicromolar range. The Mpro consensus pharmacophore reported herein can be used to identify compounds with improved activity and novel chemical scaffolds against Mpro. The method developed for its generation is provided as an open-access code (https://github.com/AngelRuizMoreno/ConcensusPharmacophore) and can be applied to other pharmacological targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Small Molecule Libraries/pharmacology , Pharmacophore , Consensus , Viral Nonstructural Proteins/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
8.
Clin Infect Dis ; 77(9): 1282-1290, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37450614

ABSTRACT

BACKGROUND: Invasive aspergillosis (IA) in immunocompromised hosts carries high morbidity and mortality. Diagnosis is often delayed because definitive diagnosis requires invasive specimen collection, while noninvasive testing with galactomannan is moderately accurate. Plasma cell-free DNA polymerase chain reaction (cfDNA PCR) represents a novel testing modality for the noninvasive diagnosis of invasive fungal disease (IFD). We directly compared the performance of Aspergillus plasma cfDNA PCR with serum galactomannan for the diagnosis of IA during routine clinical practice. METHODS: We conducted a retrospective study of all patients with suspected IFD who had Aspergillus plasma cfDNA PCR testing at Stanford Health Care from 1 September 2020 to 30 October 2022. Patients were categorized into proven, probable, possible, and no IA based on the EORTC/MSG definitions. Primary outcomes included the clinical sensitivity and specificity for Aspergillus plasma cfDNA PCR and galactomannan. RESULTS: Overall, 238 unique patients with Aspergillus plasma cfDNA PCR test results, including 63 positives and 175 nonconsecutive negatives, were included in this study. The majority were immunosuppressed (89.9%) with 22.3% 30-day all-cause mortality. The overall sensitivity and specificity of Aspergillus plasma cfDNA PCR were 86.0% (37 of 43; 95% confidence interval [CI], 72.7-95.7) and 93.1% (121 of 130; 95% CI, 87.4-96.3), respectively. The sensitivity and specificity of serum galactomannan in hematologic malignancies/stem cell transplants were 67.9% (19 of 28; 95% CI, 49.3-82.1) and 89.8% (53 of 59; 95% CI, 79.5-95.3), respectively. The sensitivity of cfDNA PCR was 93.0% (40 of 43; 95% CI, 80.9-98.5) in patients with a new diagnosis of IA. CONCLUSIONS: Aspergillus plasma cfDNA PCR represents a more sensitive alternative to serum galactomannan for noninvasive diagnosis of IA.


Subject(s)
Aspergillosis , Cell-Free Nucleic Acids , Invasive Fungal Infections , Humans , Retrospective Studies , Aspergillosis/diagnosis , Aspergillus/genetics , Polymerase Chain Reaction/methods , Mannans , Invasive Fungal Infections/diagnosis , Sensitivity and Specificity
9.
Anal Chem ; 95(18): 7329-7335, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37083185

ABSTRACT

Increasingly difficult-to-treat infections by antibiotic-resistant bacteria have become a major public health challenge. Rapid detection of common resistance mechanisms before empiric antibiotic usage is essential for optimizing therapeutic outcomes and containing further spread of resistance to antibiotics among other bacteria. Herein, we present a bioluminogenic probe, D-Bluco, for rapid detection of ß-lactamase activity in viable pathogenic bacteria. D-Bluco is a pro-luciferin caged by a ß-lactamase-responsive cephalosporin structure and further conjugated with a dabcyl quencher. The caging and quenching significantly decreased the initial background emission and increased the signal-to-background ratio by more than 1200-fold. D-Bluco was shown to detect a broad range of ß-lactamases at the femtomolar level. An ultrasensitive RAPID bioluminescence assay using D-Bluco can detect 102 to 103 colony forming unit per milliliter (cfu/mL) of ß-lactamase-producing Enterobacterales in urine samples within 30 min. The high sensitivity and rapid detection make the assay attractive for the use of point-of-care diagnostics for lactam-resistant pathogens.


Subject(s)
Anti-Bacterial Agents , Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , beta-Lactamases , Cephalosporins
10.
J Clin Microbiol ; 60(5): e0010122, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35387472

ABSTRACT

Pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii is a serious infection in immunocompromised hosts which requires prompt diagnosis and treatment. The recommended specimen for diagnosis of PCP is bronchoalveolar lavage (BAL) fluid, which is invasive and may not be possible in unstable patients. The aim of this study was to evaluate the accuracy of noninvasive P. jirovecii plasma cell-free DNA (cfDNA) PCR using recently optimized preanalytical and analytical methods. Adult patients undergoing clinical testing for PCP with direct fluorescent antibody stain (DFA), respiratory PCR, and/or ß-d-glucan were included in this study. Sensitivity and specificity P. jirovecii plasma cfDNA PCR was determined in PCP suspects categorized as proven and probable. A total of 149 patients were included in this study, of which 10 had proven and 27 had probable PCP. Most patients (95.9%, 143/149) were immunocompromised, including hematological malignancies (30.1%), bone marrow transplant (11.2%), solid organ transplantation (47.6%), and HIV/AIDS (4.2%). P. jirovecii plasma cfDNA PCR showed sensitivity and specificity of 100% (10/10; 95% confidence interval [CI], 69.2 to 100) and 93.4% (127/136; 95% CI, 87.8 to 96.9), and 48.6% (18/37; 95% CI, 31.9 to 65.6) and 99.1% (108/109; 95% CI, 94.9 to 100) in proven and proven/probable cases, respectively. P. jirovecii cell-free DNA PCR was similar in sensitivity but with substantially improved specificity over ß-d-glucan (sensitivity, 60.0% [18/30; 95% CI, 40.6 to 77.3]); specificity, 66.7% [22/33; 95% CI, 48.2 to 82.0]) in patients with proven/probable PCP. Plasma cfDNA PCR offers a noninvasive testing option for early and accurate diagnosis of PCP, particularly in patients who cannot tolerate bronchoscopy.


Subject(s)
Cell-Free Nucleic Acids , Pneumocystis carinii , Pneumonia, Pneumocystis , Adult , Bronchoalveolar Lavage Fluid , Glucans , Humans , Pneumocystis carinii/genetics , Pneumonia, Pneumocystis/diagnosis , Polymerase Chain Reaction , Sensitivity and Specificity
11.
J Clin Microbiol ; 60(10): e0113122, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36121216

ABSTRACT

Manual reading of fluorescent acid-fast bacilli (AFB) microscopy slides is time-intensive and technically demanding. The aim of this study was to evaluate the accuracy of MetaSystems' automated fluorescent AFB slide scanner and analyzer. Auramine O-stained slides corresponding to 133 culture-positive and 363 culture-negative respiratory (n = 284), tissue (n = 120), body fluid (n = 81), and other (n = 11) sources were evaluated with the MetaSystems Mycobacteria Scanner running the NEON Metafer AFB Module. The sensitivity and specificity of the MetaSystems platform was measured as a standalone diagnostic and as an assistant to technologists to review positive images. Culture results were used as the reference method. The MetaSystems platform failed to scan 57 (11.5%) slides. The MetaSystems platform used as a standalone had a sensitivity of 97.0% (129/133; 95% CI 92.5 to 99.2) and specificity of 12.7% (46/363; 95% CI 9.4 to 16.5). When positive scans were used to assist technologists, the MetaSystems platform had a sensitivity of 70.7% (94/133; 95% CI 62.2 to 78.3) and specificity of 89.0% (323/363; 95% CI 85.3 to 92.0). The manual microscopy method had a sensitivity of 79.7% (106/133; 95% CI 71.9 to 86.2) and specificity of 98.6% (358/363; 95% CI 96.8 to 99.6). The sensitivity of the MetaSystems platform was not impacted by smear grade or mycobacterial species. The majority (70.3%) of false positive smears had ≥2+ smear results with the MetaSystems platform. Further performance improvements are needed before the MetaSystems' automated fluorescent AFB slide reader can be used to assist microscopist in the clinical laboratory.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium , Humans , Sputum/microbiology , Benzophenoneidum , Neon , Microscopy, Fluorescence , Sensitivity and Specificity
13.
Nucleic Acids Res ; 48(D1): D1164-D1170, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31740968

ABSTRACT

The Standard European Vector Architecture 3.0 database (SEVA-DB 3.0, http://seva.cnb.csic.es) is the update of the platform launched in 2013 both as a web-based resource and as a material repository of formatted genetic tools (mostly plasmids) for analysis, construction and deployment of complex bacterial phenotypes. The period between the first version of SEVA-DB and the present time has witnessed several technical, computational and conceptual advances in genetic/genomic engineering of prokaryotes that have enabled upgrading of the utilities of the updated database. Novelties include not only a more user-friendly web interface and many more plasmid vectors, but also new links of the plasmids to advanced bioinformatic tools. These provide an intuitive visualization of the constructs at stake and a range of virtual manipulations of DNA segments that were not possible before. Finally, the list of canonical SEVA plasmids is available in machine-readable SBOL (Synthetic Biology Open Language) format. This ensures interoperability with other platforms and affords simulations of their behaviour under different in vivo conditions. We argue that the SEVA-DB will remain a useful resource for extending Synthetic Biology approaches towards non-standard bacterial species as well as genetically programming new prokaryotic chassis for a suite of fundamental and biotechnological endeavours.


Subject(s)
Bacteria/genetics , Computational Biology/methods , Databases, Genetic , Genetic Engineering , Genetic Vectors , Cloning, Molecular , Europe , Software , Web Browser
14.
J Proteome Res ; 20(5): 2751-2761, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33797912

ABSTRACT

Iron is an essential element for life, as it is critical for oxygen transport, cellular respiration, DNA synthesis, and metabolism. Disruptions in iron metabolism have been associated with several complex diseases like diabetes, cancer, infection susceptibility, neurodegeneration, and others; however, the molecular mechanisms linking iron metabolism with these diseases are not fully understood. A commonly used model to study iron deficiency (ID) is yeast, Saccharomyces cerevisiae. Here, we used quantitative (phospho)proteomics to explore the early (4 and 6 h) and late (12 h) response to ID. We showed that metabolic pathways like the Krebs cycle, amino acid, and ergosterol biosynthesis were affected by ID. In addition, during the late response, several proteins related to the ubiquitin-proteasome system and autophagy were upregulated. We also explored the proteomic changes during a recovery period after 12 h of ID. Several proteins recovered their steady-state levels, but some others, such as cytochromes, did not recover during the time tested. Additionally, we showed that autophagy is active during ID, and some of the degraded proteins during ID can be rescued using KO strains for several key autophagy genes. Our results highlight the complex proteome changes occurring during ID and recovery. This study constitutes a valuable data set for researchers interested in iron biology, offering a temporal proteomic data set for ID, as well as a compendium the proteomic changes associated with episodes of iron recovery.


Subject(s)
Anemia, Iron-Deficiency , Saccharomyces cerevisiae Proteins , Humans , Iron , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
15.
Clin Infect Dis ; 73(9): 1677-1684, 2021 11 02.
Article in English | MEDLINE | ID: mdl-33606010

ABSTRACT

BACKGROUND: Invasive fungal infection (IFI) is a growing cause of morbidity and mortality in oncology and transplant patients. Diagnosis of IFI is often delayed due to need for invasive biopsy and low sensitivity of conventional diagnostic methods. Fungal cell-free DNA (cfDNA) detection in plasma is a novel testing modality for the noninvasive diagnosis of IFI. METHODS: A novel bioinformatic pipeline was created to interrogate fungal genomes and identify multicopy sequences for cfDNA polymerase chain reaction (PCR) targeting. A real-time PCR panel was developed for 12 genera and species most commonly causing IFI. Sensitivity and specificity of the fungal PCR panel were determined using plasma samples from patients with IFI and non-IFI controls. Clinical impact of the fungal PCR panel was evaluated prospectively based on the treating team's interpretation of the results. RESULTS: Overall, the sensitivity and specificity were 56.5% (65/115; 95% confidence interval [CI], 47.4-65.2) and 99.5% (2064/2075; 95% CI, 99.0-99.7), respectively. In the subset of patients with an optimized plasma volume (2 mL), sensitivity was 69.6% (48/69; 95% CI, 57.9-79.2). Sensitivity was 91.7% (11/12; 95% CI, 62.5-100) for detection of Mucorales agents, 56.3% (9/16; 95% CI, 33.2-76.9) for Aspergillus species, and 84.6% (11/13; 95% CI, 56.5-96.9) for Candida albicans. In a prospective evaluation of 226 patients with suspected IFI, cfDNA testing was positive in 47 (20.8%) patients and resulted in a positive impact on clinical management in 20 of 47 (42.6%). CONCLUSIONS: The fungal cfDNA PCR panel offers a noninvasive approach to early diagnosis of IFI, providing actionable results for personalized care.


Subject(s)
Cell-Free Nucleic Acids , Invasive Fungal Infections , Mycoses , Candida albicans , DNA, Fungal/genetics , Humans , Invasive Fungal Infections/diagnosis , Mycoses/diagnosis , Real-Time Polymerase Chain Reaction
16.
Soft Matter ; 17(8): 2223-2233, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33465214

ABSTRACT

Single-chain nanoparticles (SCNPs) are ultrasoft objects obtained through purely intramolecular cross-linking of single polymer chains. By means of computer simulations with implemented hydrodynamic interactions, we investigate for the first time the effect of the shear flow on the structural and dynamic properties of SCNPs in semidilute and concentrated solutions. We characterize the dependence of several conformational and dynamic observables on the shear rate and the concentration, obtaining a set of power-law scaling laws. The concentration has a very different effect on the shear rate dependence of the former observables in SCNPs than in simple linear chains. Whereas for the latter the scaling behaviour is marginally dependent on the concentration, two clearly different scaling regimes are found for the SCNPs below and above the overlap concentration. At fixed shear rate SCNPs and linear chains also respond very differently to crowding. Whereas, at moderate and high Weissenberg numbers the linear chains swell, the SCNPs exhibit a complex non-monotonic behaviour. We suggest that these findings are inherently related to the topological interactions preventing concatenation of the SCNPs, which lead to less interpenetration than for linear chains, and to the limitation to stretching imposed by the permanent cross-links in the SCNPs, which itself limits the ways to spatially arrange in the shear flow.

17.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810348

ABSTRACT

CD44 promotes metastasis, chemoresistance, and stemness in different types of cancer and is a target for the development of new anti-cancer therapies. All CD44 isoforms share a common N-terminal domain that binds to hyaluronic acid (HA). Herein, we used a computational approach to design new potential CD44 antagonists and evaluate their target-binding ability. By analyzing 30 crystal structures of the HA-binding domain (CD44HAbd), we characterized a subdomain that binds to 1,2,3,4-tetrahydroisoquinoline (THQ)-containing compounds and is adjacent to residues essential for HA interaction. By computational combinatorial chemistry (CCC), we designed 168,190 molecules and compared their conformers to a pharmacophore containing the key features of the crystallographic THQ binding mode. Approximately 0.01% of the compounds matched the pharmacophore and were analyzed by computational docking and molecular dynamics (MD). We identified two compounds, Can125 and Can159, that bound to human CD44HAbd (hCD44HAbd) in explicit-solvent MD simulations and therefore may elicit CD44 blockage. These compounds can be easily synthesized by multicomponent reactions for activity testing and their binding mode, reported here, could be helpful in the design of more potent CD44 antagonists.


Subject(s)
Drug Design , Drug Discovery , Hyaluronan Receptors , Molecular Dynamics Simulation , Tetrahydroisoquinolines , Animals , Binding Sites , Humans , Hyaluronan Receptors/antagonists & inhibitors , Hyaluronan Receptors/chemistry , Hyaluronic Acid/metabolism , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Binding , Tetrahydroisoquinolines/chemistry
18.
Am J Pathol ; 189(1): 94-103, 2019 01.
Article in English | MEDLINE | ID: mdl-30312581

ABSTRACT

The abundance of any protein is determined by the balance of protein synthesis and protein degradation. Regulated protein degradation has emerged as a powerful means of precisely controlling individual protein abundance within cells and is largely mediated by the ubiquitin-proteasome system (UPS). By controlling the levels of key regulatory proteins, the UPS contributes to nearly every aspect of cellular function. The UPS also functions in protein quality control, rapidly identifying and destroying misfolded or otherwise aberrant proteins that may be toxic to cells. Increasingly, we understand that dysregulation of protein degradation pathways is critical for many human diseases. Conversely, the versatility and scope of the UPS provides opportunities for therapeutic intervention. In this review, we will discuss the basic mechanisms of protein degradation by the UPS. We will then consider some paradigms of human disease related to protein degradation using selected examples. Finally, we will highlight several established and emerging therapeutic strategies based on altering pathways of protein degradation.


Subject(s)
Proteolysis , Proteostasis Deficiencies , Humans , Proteasome Endopeptidase Complex/metabolism , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Ubiquitin/biosynthesis , Ubiquitination
19.
Mol Syst Biol ; 15(12): e8777, 2019 12.
Article in English | MEDLINE | ID: mdl-31885200

ABSTRACT

While prokaryotic promoters controlled by signal-responding regulators typically display a range of input/output ratios when exposed to cognate inducers, virtually no naturally occurring cases are known to have an OFF state of zero transcription-as ideally needed for synthetic circuits. To overcome this problem, we have modelled and implemented a simple digitalizer module that completely suppresses the basal level of otherwise strong promoters in such a way that expression in the absence of induction is entirely impeded. The circuit involves the interplay of a translation-inhibitory sRNA with the translational coupling of the gene of interest to a repressor such as LacI. The digitalizer module was validated with the strong inducible promoters Pm (induced by XylS in the presence of benzoate) and PalkB (induced by AlkS/dicyclopropyl ketone) and shown to perform effectively in both Escherichia coli and the soil bacterium Pseudomonas putida. The distinct expression architecture allowed cloning and conditional expression of, e.g. colicin E3, one molecule of which per cell suffices to kill the host bacterium. Revertants that escaped ColE3 killing were not found in hosts devoid of insertion sequences, suggesting that mobile elements are a major source of circuit inactivation in vivo.


Subject(s)
Colicins/genetics , Gene Expression , Gram-Negative Bacteria/genetics , Cloning, Molecular , Colicins/metabolism , Escherichia coli/genetics , Promoter Regions, Genetic , Pseudomonas putida/genetics , Systems Biology/methods
20.
J Chem Inf Model ; 60(12): 6298-6313, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33270455

ABSTRACT

Macrocycles target proteins that are otherwise considered undruggable because of a lack of hydrophobic cavities and the presence of extended featureless surfaces. Increasing efforts by computational chemists have developed effective software to overcome the restrictions of torsional and conformational freedom that arise as a consequence of macrocyclization. Moloc is an efficient algorithm, with an emphasis on high interactivity, and has been constantly updated since 1986 by drug designers and crystallographers of the Roche biostructural community. In this work, we have benchmarked the shape-guided algorithm using a dataset of 208 macrocycles, carefully selected on the basis of structural complexity. We have quantified the accuracy, diversity, speed, exhaustiveness, and sampling efficiency in an automated fashion and we compared them with four commercial (Prime, MacroModel, molecular operating environment, and molecular dynamics) and four open-access (experimental-torsion distance geometry with additional "basic knowledge" alone and with Merck molecular force field minimization or universal force field minimization, Cambridge Crystallographic Data Centre conformer generator, and conformator) packages. With three-quarters of the database processed below the threshold of high ring accuracy, Moloc was identified as having the highest sampling efficiency and exhaustiveness without producing thousands of conformations, random ring splitting into two half-loops, and possibility to interactively produce globular or flat conformations with diversity similar to Prime, MacroModel, and molecular dynamics. The algorithm and the Python scripts for full automatization of these parameters are freely available for academic use.


Subject(s)
Benchmarking , Macrocyclic Compounds , Molecular Conformation , Molecular Dynamics Simulation , Software
SELECTION OF CITATIONS
SEARCH DETAIL