Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Part Fibre Toxicol ; 21(1): 29, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107780

ABSTRACT

BACKGROUND: Microplastics have been detected in the atmosphere as well as in the ocean, and there is concern about their biological effects in the lungs. We conducted a short-term inhalation exposure and intratracheal instillation using rats to evaluate lung disorders related to microplastics. We conducted an inhalation exposure of polypropylene fine powder at a low concentration of 2 mg/m3 and a high concentration of 10 mg/m3 on 8-week-old male Fischer 344 rats for 6 h a day, 5 days a week for 4 weeks. We also conducted an intratracheal instillation of polypropylene at a low dose of 0.2 mg/rat and a high dose of 1.0 mg/rat on 12-week-old male Fischer 344 rats. Rats were dissected from 3 days to 6 months after both exposures, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected to analyze lung inflammation and lung injury. RESULTS: Both exposures to polypropylene induced a persistent influx of inflammatory cells and expression of CINC-1, CINC-2, and MPO in BALF from 1 month after exposure. Genetic analysis showed a significant increase in inflammation-related factors for up to 6 months. The low concentration in the inhalation exposure of polypropylene also induced mild lung inflammation. CONCLUSION: These findings suggest that inhaled polypropylene, which is a microplastic, induces persistent lung inflammation and has the potential for lung disorder. Exposure to 2 mg/m3 induced inflammatory changes and was thought to be the Lowest Observed Adverse Effect Level (LOAEL) for acute effects of polypropylene. However, considering the concentration of microplastics in a real general environment, the risk of environmental hazards to humans may be low.


Subject(s)
Bronchoalveolar Lavage Fluid , Inhalation Exposure , Lung , Microplastics , Pneumonia , Polypropylenes , Rats, Inbred F344 , Animals , Male , Polypropylenes/toxicity , Microplastics/toxicity , Inhalation Exposure/adverse effects , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/pathology , Pneumonia/chemically induced , Rats
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612383

ABSTRACT

Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.


Subject(s)
Acrylates , Lung Injury , Polymers , Rats , Animals , Rats, Inbred F344 , Endoplasmic Reticulum Stress , Inflammation , Lung
3.
Toxicology ; 506: 153845, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801935

ABSTRACT

We investigated the intratracheal instillation of Polyacrylic acid (PAA) in rats to determine if it would cause pulmonary disorders, and to see what factors would be associated with the pathological changes. Male F344 rats were intratracheally instilled with low (0.2 mg/rat) and high (1.0 mg/rat) doses of PAA. They were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months after PAA exposure to examine inflammatory and fibrotic changes in the lungs. There was a persistent increase in the neutrophil count, lactate dehydrogenase (LDH) levels, cytokine-induced neutrophil chemoattractant (CINC) values in bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in lung tissue. Transforming growth factor-beta 1 (TGF-ß1), a fibrotic factor, showed a sustained increase in the BALF until 6 months after intratracheal instillation, and connective tissue growth factor (CTGF) in lung tissue was elevated at 3 days after exposure. Histopathological findings in the lung tissue showed persistent (more than one month) inflammation, fibrotic changes, and epithelial-mesenchymal transition (EMT) changes. There was also a strong correlation between TGF-ß1 in the BALF and, especially, in the fibrosis score of histopathological specimens. Intratracheal instillation of PAA induced persistent neutrophilic inflammation, fibrosis, and EMT in the rats' lungs, and TGF-ß1 and CTGF appeared to be associated with the persistent fibrosis.


Subject(s)
Acrylic Resins , Bronchoalveolar Lavage Fluid , Connective Tissue Growth Factor , Pulmonary Fibrosis , Rats, Inbred F344 , Transforming Growth Factor beta1 , Animals , Male , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Acrylic Resins/toxicity , Acrylic Resins/administration & dosage , Connective Tissue Growth Factor/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Rats , Lung/drug effects , Lung/pathology , Lung/metabolism , L-Lactate Dehydrogenase/metabolism , Heme Oxygenase-1/metabolism , Chemokine CXCL1/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Heme Oxygenase (Decyclizing)
SELECTION OF CITATIONS
SEARCH DETAIL