Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339010

ABSTRACT

Bladder cancer (BC) constitutes one of the most diagnosed types of cancer worldwide. Advancements in and new methodologies for DNA sequencing, leading to high-throughput microbiota testing, have pinpointed discrepancies in urinary microbial fingerprints between healthy individuals and patients with BC. Although several studies suggest an involvement of microbiota dysbiosis in the pathogenesis, progression, and therapeutic response to bladder cancer, an established direct causal relationship remains to be elucidated due to the lack of standardized methodologies associated with such studies. This review compiles an overview of the microbiota of the human urinary tract in healthy and diseased individuals and discusses the evidence to date on microbiome involvement and potential mechanisms by which the microbiota may contribute to the development of BC. We also explore the potential profiling of urinary microbiota as a biomarker for risk stratification, as well as the prediction of the response to intravesical therapies and immunotherapy in BC patients. Further investigation into the urinary microbiome of BC patients is imperative to unravel the complexities of the role played by host-microbe interactions in shaping wellness or disease and yield valuable insights into and strategies for the prevention and personalized treatment of BC.


Subject(s)
Microbiota , Urinary Bladder Neoplasms , Urinary Tract , Humans , Urinary Bladder Neoplasms/pathology , Urinary Tract/pathology , Microbiota/genetics , Host Microbial Interactions , Immunotherapy
2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675055

ABSTRACT

Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Prostatic Neoplasms , Male , Humans , Microbiota/physiology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Gastrointestinal Microbiome/physiology , Prostate/pathology , Inflammation , Dysbiosis
3.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36902427

ABSTRACT

Cancer stem cells (CSCs) have drawn much attention as important tumour-initiating cells that may also be crucial for recurrence after chemotherapy. Although the activity of CSCs in various forms of cancer is complex and yet to be fully elucidated, opportunities for therapies targeting CSCs exist. CSCs are molecularly distinct from bulk tumour cells, so they can be targeted by exploiting their signature molecular pathways. Inhibiting stemness has the potential to reduce the risk posed by CSCs by limiting or eliminating their capacity for tumorigenesis, proliferation, metastasis, and recurrence. Here, we briefly described the role of CSCs in tumour biology, the mechanisms involved in CSC therapy resistance, and the role of the gut microbiota in cancer development and treatment, to then review and discuss the current advances in the discovery of microbiota-derived natural compounds targeting CSCs. Collectively, our overview suggests that dietary intervention, toward the production of those identified microbial metabolites capable of suppressing CSC properties, is a promising approach to support standard chemotherapy.


Subject(s)
Biological Products , Microbiota , Neoplasms , Humans , Drug Resistance, Neoplasm , Biological Products/pharmacology , Neoplasms/pathology , Neoplastic Stem Cells/metabolism
4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902117

ABSTRACT

Vitamin D is a secosteroid hormone that is highly involved in bone health. Mounting evidence revealed that, in addition to the regulation of mineral metabolism, vitamin D is implicated in cell proliferation and differentiation, vascular and muscular functions, and metabolic health. Since the discovery of vitamin D receptors in T cells, local production of active vitamin D was demonstrated in most immune cells, addressing the interest in the clinical implications of vitamin D status in immune surveillance against infections and autoimmune/inflammatory diseases. T cells, together with B cells, are seen as the main immune cells involved in autoimmune diseases; however, growing interest is currently focused on immune cells of the innate compartment, such as monocytes, macrophages, dendritic cells, and natural killer cells in the initiation phases of autoimmunity. Here we reviewed recent advances in the onset and regulation of Graves' and Hashimoto's thyroiditis, vitiligo, and multiple sclerosis in relation to the role of innate immune cells and their crosstalk with vitamin D and acquired immune cells.


Subject(s)
Autoimmune Diseases , Graves Disease , Hashimoto Disease , Humans , Vitamin D/physiology , Graves Disease/epidemiology , Vitamins
5.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003622

ABSTRACT

Maintaining a delicate balance between the prompt immune response to pathogens and tolerance towards self-antigens and commensals is crucial for health. T regulatory (Treg) cells are pivotal in preserving self-tolerance, serving as negative regulators of inflammation through the secretion of anti-inflammatory cytokines, interleukin-2 neutralization, and direct suppression of effector T cells. Graves' disease (GD) is a thyroid-specific autoimmune disorder primarily attributed to the breakdown of tolerance to the thyroid-stimulating hormone receptor. Given the limitations of currently available GD treatments, identifying potential pathogenetic factors for pharmacological targeting is of paramount importance. Both functional impairment and frequency reduction of Tregs seem likely in GD pathogenesis. Genome-wide association studies in GD have identified polymorphisms of genes involved in Tregs' functions, such as CD25 (interleukin 2 receptor), and Forkhead box protein P3 (FOXP3). Clinical studies have reported both functional impairment and a reduction in Treg frequency or suppressive actions in GD, although their precise involvement remains a subject of debate. This review begins with an overview of Treg phenotype and functions, subsequently delves into the pathophysiology of GD and into the existing literature concerning the role of Tregs and the balance between Tregs and T helper 17 cells in GD, and finally explores the ongoing studies on target therapies for GD.


Subject(s)
Graves Disease , Hashimoto Disease , Humans , T-Lymphocytes, Regulatory , Genome-Wide Association Study , Graves Disease/genetics , Receptors, Thyrotropin/metabolism
6.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895050

ABSTRACT

Neutrophils represent the primary defense against microbial threats playing a pivotal role in maintaining tissue homeostasis. This review examines the multifaceted involvement of neutrophils in periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth summarizing the contribution of neutrophil dysfunction in periodontitis and periodontal-related comorbidities. Periodontitis, a pathological condition promoted by dysbiosis of the oral microbiota, is characterized by the chronic inflammation of the gingiva and subsequent tissue destruction. Neutrophils are among the first immune cells recruited to the site of infection, releasing antimicrobial peptides, enzymes, and reactive oxygen species to eliminate pathogens. The persistent inflammatory state in periodontitis can lead to aberrant neutrophil activation and a sustained release of proinflammatory mediators, finally resulting in tissue damage, bone resorption, and disease progression. Growing evidence now points to the correlation between periodontitis and systemic comorbidities. Indeed, the release of inflammatory mediators, immune complexes, and oxidative stress by neutrophils, bridge the gap between local and systemic immunity, thus highlighting neutrophils as key players in linking periodontal inflammation to chronic conditions, including cardiovascular diseases, diabetes mellitus, and rheumatoid arthritis. This review underscores the crucial role of neutrophils in the pathogenesis of periodontitis and the complex link between neutrophil dysfunction, local inflammation, and systemic comorbidities. A comprehensive understanding of neutrophil contribution to periodontitis development and their impact on periodontal comorbidities holds significant implications for the management of oral health. Furthermore, it highlights the need for the development of novel approaches aimed at limiting the persistent recruitment and activation of neutrophils, also reducing the impact of periodontal inflammation on broader health contexts, offering promising avenues for improved disease management and patient care.


Subject(s)
Cardiovascular Diseases , Periodontitis , Humans , Neutrophils , Cardiovascular Diseases/etiology , Periodontitis/complications , Inflammation/complications , Chronic Disease
7.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36012339

ABSTRACT

Ovarian cancer represents one of the most malignant gynecological cancers worldwide, with an overall 5-year survival rate, being locked in the 25-30% range in the last decade. Cancer immunotherapy is currently one of the most intensively investigated and promising therapeutic strategy and as such, is expected to provide in the incoming years significant benefits for ovarian cancer treatment as well. Here, we provide a detailed survey on the highly pleiotropic oncosuppressive roles played by the human RNASET2 gene, whose protein product has been consistently reported to establish a functional crosstalk between ovarian cancer cells and key cellular effectors of the innate immune system (the monocyte/macrophages lineage), which is in turn able to promote the recruitment to the cancer tissue of M1-polarized, antitumoral macrophages. This feature, coupled with the ability of T2 ribonucleases to negatively affect several cancer-related parameters in a cell-autonomous manner on a wide range of ovarian cancer experimental models, makes human RNASET2 a very promising candidate to develop a "multitasking" therapeutic approach for innovative future applications for ovarian cancer treatment.


Subject(s)
Ovarian Neoplasms , Ribonucleases , Tumor Suppressor Proteins , Female , Genes, Tumor Suppressor , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , Tumor Suppressor Proteins/genetics
8.
Int J Mol Sci ; 21(19)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998408

ABSTRACT

Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix (ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness, impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely recognized to accompany and complicate various CVDs, events and mechanisms driving and governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not just in the classical response to pathogens, but they take an active part in "sterile" inflammation, in response to ischemia and other forms of injury. In this context, different cell types infiltrate the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts, and other non-immune/host-derived cells is now considered as the major driving force of cardiac fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity, including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury. A better understanding of the time frame, sequences of events during immune cells infiltration, and their action in the injured inflammatory heart environment, may provide a rationale to design new and more efficacious therapeutic interventions to reduce cardiac fibrosis.


Subject(s)
Cell Communication/immunology , Endomyocardial Fibrosis/immunology , Immunity, Innate , Myocardial Reperfusion Injury/immunology , Myocardium/immunology , Myofibroblasts/immunology , Adaptive Immunity , Animals , Cytokines/immunology , Cytokines/metabolism , Endomyocardial Fibrosis/metabolism , Endomyocardial Fibrosis/pathology , Eosinophils/immunology , Eosinophils/metabolism , Eosinophils/pathology , Extracellular Matrix/chemistry , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Humans , Inflammation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mast Cells/immunology , Mast Cells/metabolism , Mast Cells/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology
9.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354198

ABSTRACT

Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.


Subject(s)
Immunity, Innate/drug effects , Ovarian Neoplasms/therapy , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell- and Tissue-Based Therapy , Disease Progression , Female , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Molecular Targeted Therapy , Ovarian Neoplasms/immunology
10.
FASEB J ; 32(10): 5365-5377, 2018 10.
Article in English | MEDLINE | ID: mdl-29763380

ABSTRACT

NK cells are effector lymphocytes involved in tumor immunosurveillance; however, in patients with solid malignancies, NK cells have compromised functions. We have previously reported that lung tumor-associated NK cells (TANKs; peripheral blood) and tumor-infiltrating NK cells (TINKs) show proangiogenic, decidual NK-like (dNK) phenotype. In this study, we functionally and molecularly investigated TINKs and TANKs from blood and tissue samples of patients with colorectal cancer (CRC), a neoplasm in which inflammation and angiogenesis have clinical relevance, and compared them to NK cells from controls and patients with nononcologic inflammatory bowel disease. CRC TINKs/TANKs showed decreased expression for the activatory marker NKG2D, impaired degranulation activity, a decidual-like NK polarization toward the CD56brightCD16dim/-CD9+CD49+ subset. TINKs and TANKs secreted cytokines with proangiogenic activities, and induce endothelial cell proliferation, migration, adhesion, and the formation of capillary-like structures in vitro. dNK cells release specific proangiogenic factors; among which, angiogenin and invasion-associated enzymes related to the MMP9-TIMP1/2 axis. Here, we describe, for the first time, to our knowledge, the expression of angiogenin, MMP2/9, and TIMP by TANKs in patients with CRC. This phenotype could be relevant to the invasive capabilities and proangiogenic functions of CRC-NK cells and become a novel biomarker. STAT3/STAT5 activation was observed in CRC-TANKs, and treatment with pimozide, a STAT5 inhibitor, reduced endothelial cell capability to form capillary-like networks, inhibiting VEGF and angiogenin production without affecting the levels of TIMP1, TIMP2, and MMP9, indicating that STAT5 is involved in cytokine modulation but not invasion-associated molecules. Combination of Stat5 or MMP inhibitors with immunotherapy could help repolarize CRC TINKs and TANKs to anti-tumor antimetastatic ones.-Bruno, A., Bassani, B., D'Urso, D. G., Pitaku, I., Cassinotti, E., Pelosi, G., Boni, L., Dominioni, L., Noonan, D. M., Mortara, L., Albini, A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer.


Subject(s)
Colorectal Neoplasms/immunology , Gene Expression Regulation, Neoplastic/immunology , Killer Cells, Natural/immunology , Matrix Metalloproteinase 9/immunology , Neoplasm Proteins/immunology , Neovascularization, Pathologic/immunology , Ribonuclease, Pancreatic/immunology , Tissue Inhibitor of Metalloproteinase-2/immunology , Up-Regulation/immunology , Colorectal Neoplasms/blood supply , Colorectal Neoplasms/pathology , Humans , Neovascularization, Pathologic/pathology
11.
Eur J Immunol ; 47(4): 743-753, 2017 04.
Article in English | MEDLINE | ID: mdl-28198545

ABSTRACT

The fusion protein L19mTNF (mouse TNF and human antibody fragment L19 directed to fibronectin extra domain B) selectively targets the tumor vasculature, and in combination with melphalan induces a long-lasting T-cell therapeutic response and immune memory in murine models. Increasing evidence suggests that natural killer (NK) cells act to promote effective T-cell-based antitumor responses. We have analyzed the role of NK cells and dendritic cells (DCs) on two different murine tumor models: WEHI-164 fibrosarcoma and C51 colon carcinoma, in which the combined treatment induces high and low rejection rates, respectively. In vivo NK-cell depletion strongly reduced the rejection of WEHI-164 fibrosarcoma and correlated with a decrease in mature DCs, CD4+ , and CD8+ T cells in the tumor-draining LNs and mature DCs and CD4+ T cells in the tumor 40 h after initiation of the therapy. NK-cell depletion also resulted in the impairment of the stimulatory capability of DCs derived from tumor-draining LNs of WEHI-164-treated mice. Moreover, a significant reduction of M2-type infiltrating macrophages was detected in both tumors undergoing therapy. These results suggest that the efficacy of L19mTNF/melphalan therapy is strongly related to the early activation of NK cells and DCs, which are necessary for an effective T-cell response.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/drug therapy , Dendritic Cells/immunology , Drug Therapy, Combination , Fibrosarcoma/drug therapy , Killer Cells, Natural/immunology , Melphalan/therapeutic use , Recombinant Fusion Proteins/therapeutic use , T-Lymphocytes, Cytotoxic/immunology , Animals , CD4-Positive T-Lymphocytes/drug effects , Cell Differentiation , Cell Line, Tumor , Dendritic Cells/drug effects , Disease Models, Animal , Humans , Killer Cells, Natural/drug effects , Lymphocyte Activation , Lymphocyte Depletion , Mice , Mice, Inbred BALB C , T-Lymphocytes, Cytotoxic/drug effects , Tumor Burden/drug effects
13.
J Immunol ; 195(3): 965-72, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26091716

ABSTRACT

Recent studies suggested that human CD56(bright)CD16(-) NK cells may play a role in the regulation of the immune response. Since the mechanism(s) involved have not yet been elucidated, in the present study we have investigated the role of nucleotide-metabolizing enzymes that regulate the extracellular balance of nucleotides/nucleosides and produce the immunosuppressive molecule adenosine (ADO). Peripheral blood CD56(dim)CD16(+) and CD56(bright)CD16(-) NK cells expressed similar levels of CD38. CD39, CD73, and CD157 expression was higher in CD56(bright)CD16(-) than in CD56(dim)CD16(+) NK cells. CD57 was mostly expressed by CD56(dim)CD16(+) NK cells. CD203a/PC-1 expression was restricted to CD56(bright)CD16(-) NK cells. CD56(bright)CD16(-) NK cells produce ADO and inhibit autologous CD4(+) T cell proliferation. Such inhibition was 1) reverted pretreating CD56(bright)CD16(-) NK cells with a CD38 inhibitor and 2) increased pretreating CD56(bright)CD16(-) NK cells with a nucleoside transporter inhibitor, which increase extracellular ADO concentration. CD56(bright)CD16(-) NK cells isolated from the synovial fluid of juvenile idiopathic arthritis patients failed to inhibit autologous CD4(+) T cell proliferation. Such functional impairment could be related to 1) the observed reduced CD38/CD73 expression, 2) a peculiar ADO production kinetics, and 3) a different expression of ADO receptors. In contrast, CD56(bright)CD16(-) NK cells isolated from inflammatory pleural effusions display a potent regulatory activity. In conclusion, CD56(bright)CD16(-) NK cells act as "regulatory cells" through ADO produced by an ectoenzymes network, with a pivotal role of CD38. This function may be relevant for the modulation of the immune response in physiological and pathological conditions, and it could be impaired during autoimmune/inflammatory diseases.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Adenosine/biosynthesis , CD4-Positive T-Lymphocytes/immunology , CD56 Antigen/genetics , Killer Cells, Natural/immunology , Membrane Glycoproteins/metabolism , 5'-Nucleotidase/biosynthesis , ADP-ribosyl Cyclase/biosynthesis , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Antigens, CD/biosynthesis , Apyrase/biosynthesis , Arthritis, Juvenile/genetics , Arthritis, Juvenile/immunology , CD57 Antigens/biosynthesis , Cell Proliferation/genetics , GPI-Linked Proteins/biosynthesis , Humans , Killer Cells, Natural/cytology , Lymphocyte Activation/immunology , Membrane Glycoproteins/antagonists & inhibitors , Receptors, IgG/immunology , Synovial Fluid/cytology
14.
Biomedicines ; 11(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37626657

ABSTRACT

In recent years, there has been a growing interest in developing innovative anticancer therapies targeting the tumor microenvironment (TME). The TME is a complex and dynamic milieu surrounding the tumor mass, consisting of various cellular and molecular components, including those from the host organism, endowed with the ability to significantly influence cancer development and progression. Processes such as angiogenesis, immune evasion, and metastasis are crucial targets in the search for novel anticancer drugs. Thus, identifying molecules with "multi-tasking" properties that can counteract cancer cell growth at multiple levels represents a relevant but still unmet clinical need. Extensive research over the past two decades has revealed a consistent anticancer activity for several members of the T2 ribonuclease family, found in evolutionarily distant species. Initially, it was believed that T2 ribonucleases mainly acted as anticancer agents in a cell-autonomous manner. However, further investigation uncovered a complex and independent mechanism of action that operates at a non-cell-autonomous level, affecting crucial processes in TME-induced tumor growth, such as angiogenesis, evasion of immune surveillance, and immune cell polarization. Here, we review and discuss the remarkable properties of ribonucleases from the T2 family in the context of "multilevel" oncosuppression acting on the TME.

15.
Endocrine ; 79(1): 55-59, 2023 01.
Article in English | MEDLINE | ID: mdl-36180758

ABSTRACT

Genetic variation of the gene encoding for the only human enzyme of the T2 ribonucleases family (RNASET2) emerged in genome-wide association studies as a putative risk hotspot for Graves' disease (GD). T2 ribonucleases activities include immune regulation, induction of cell apoptosis and differentiation. Several reports supported the hypothesis that RNASET2 represents a "danger" message addressed to the innate immune system in peculiar conditions. This was a longitudinal, case-control study. RNASET2 protein levels were assessed in blood samples from 34 consecutive newly diagnosed GD patients and in healthy controls. At enrollment, RNASET2 levels were significantly higher in GD patients (98.5 ± 29.1 ng/ml) compared to healthy controls (72.5 ± 27.9 ng/ml, p = 0.001). After 6 months of methimazole treatment, RNASET2 levels significantly decrease and return to levels similar to healthy controls (62.4 ± 22 ng/ml, p = 0.69). These preliminary results suggest that RNASET2 is overexpressed in patients with GD and might represent an "alarm signal" generated by thyroid cells in response to endogenous or environmental stress to alert the immune system.


Subject(s)
Genome-Wide Association Study , Graves Disease , Humans , Case-Control Studies , Graves Disease/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Tumor Suppressor Proteins/genetics
16.
Front Endocrinol (Lausanne) ; 14: 1145811, 2023.
Article in English | MEDLINE | ID: mdl-37124743

ABSTRACT

Introduction: Methimazole (MMI) represents the conventional therapeutic agent for Graves' disease (GD) hyperthyroidism, but MMI efficacy is limited since it marginally affects the underlying autoimmune process. In a previous study, we randomly assigned 42 newly diagnosed GD patients with insufficient vitamin D (VitD) and selenium (Se) levels to treatment with MMI alone (standard) or combined with selenomethionine and cholecalciferol (intervention) and observed a prompter resolution of hyperthyroidism in the intervention group. Methods: In the present study, we aimed to explore changes in peripheral T regulatory (Treg) and circulating natural killer (NK) cell frequency, circulating NK cell subset distribution and function, during treatment. Results: At baseline, circulating total CD3-CD56+NK cells and CD56bright NK cells were significantly higher in GD patients than in healthy controls (HC) (15.7 ± 9.6% vs 9.9 ± 5.6%, p=0.001; 12.2 ± 10.3% vs 7.3 ± 4.1%, p=0.02, respectively); no differences emerged in Treg cell frequency. Frequencies of total NK cells and CD56bright NK cells expressing the activation marker CD69 were significantly higher in GD patients than in HC, while total NK cells and CD56dim NK cells expressing CD161 (inhibitory receptor) were significantly lower. When co-cultured with the K562 target cell, NK cells from GD patients had a significantly lower degranulation ability compared to HC (p<0.001). Following 6 months of treatment, NK cells decreased in both the intervention and MMI-alone groups, but significantly more in the intervention group (total NK: -10.3%, CI 95% -15.8; -4.8% vs -3.6%, CI 95% -9; 1.8%, p=0.09 and CD56bright NK cells: -6.5%, CI 95% -10.1; -3 vs -0.9%, CI 95% -4.4; 2%, p=0.03). Compared to baseline, CD69+ NK cells significantly decreased, while degranulation ability slightly improved, although no differences emerged between the two treatment groups. Compared to baseline, Treg cell frequency increased exclusively in the intervention group (+1.1%, CI 95% 0.4; 1.7%). Discussion: This pilot study suggested that VitD and Se supplementation, in GD patients receiving MMI treatment, modulates Treg and NK cell frequency, favoring a more pronounced reduction of NK cells and the increase of Treg cells, compared to MMI alone. Even if further studies are needed, it is possible to speculate that this immunomodulatory action might have facilitated the prompter and better control of hyperthyroidism in the supplemented group observed in the previous study.


Subject(s)
Graves Disease , Hyperthyroidism , Selenium , Humans , Methimazole/therapeutic use , Antithyroid Agents/therapeutic use , Selenium/therapeutic use , Vitamin D/therapeutic use , Pilot Projects , Graves Disease/drug therapy , Hyperthyroidism/drug therapy , Vitamins/therapeutic use , Dietary Supplements
17.
Cell Death Discov ; 9(1): 174, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221171

ABSTRACT

Tissue regeneration or healing both require efficient vascularization within a tissue-damaged area. Based on this concept, a remarkable number of strategies, aimed at developing new tools to support re-vascularization of damaged tissue have emerged. Among the strategies proposed, the use of pro-angiogenic soluble factors, as a cell-free tool, appears as a promising approach, able to overcome the issues concerning the direct use of cells for regenerative medicine therapy. Here, we compared the effectiveness of adipose mesenchymal stem cells (ASCs), use as cell suspension, ASC protein extract or ASC-conditioned-medium (i.e., soluble factors), combined with collagenic scaffold, in supporting in vivo angiogenesis. We also tested the capability of hypoxia in increasing the efficiency of ASC to promote angiogenesis, via soluble factors, both in vivo and in vitro. In vivo studies were performed using the Integra® Flowable Wound Matrix, and the Ultimatrix in sponge assay. Flow cytometry was used to characterize the scaffold- and sponge-infiltrating cells. Real-time PCR was used to evaluate the expression of pro-angiogenic factors by stimulating Human Umbilical-Vein Endothelial Cells with ASC-conditioned media, obtained in hypoxic and normoxic conditions. We found that, in vivo, ACS-conditioned media can support angiogenesis similar to ASCs and ASC protein extract. Also, we observed that hypoxia increases the pro-angiogenic activities of ASC-conditioned media, compared to normoxia, by generating a secretome enriched in pro-angiogenic soluble factors, with bFGF, Adiponectine, ENA78, GRO, GRO-a, and ICAM1-3, as most regulated factors. Finally, ASC-conditioned media, produced in hypoxic condition, induce the expression of pro-angiogenic molecules in HUVECs. Our results provide evidence that ASC-conditioned-medium can be proposed as a cell-free preparation able to support angiogenesis, thus providing a relevant tool to overcome the issues and restrictions associated with the use of cells.

18.
Acta Biomed ; 93(1): e2022070, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35315400

ABSTRACT

Over the years, the approach of traditional Chinese medicine has changed, as has the concept of the health status. Particularly in this article we will focus on the importance of some techniques that we can define millennial, as acupuncture. We will highlight the relationship between a millenary system and the principles of modernity, emphasizing the relevance of a technique that appears to be in line with the latest scientific research and numerous studies of effectiveness, proposing therapeutic integration as a usable way. We will see how acupuncture has an anti-inflammatory effect, and has a beneficial role in subjects suffering from allergic or autoimmune diseases, including an antihistamine action and downregulation of proinflammatory cytokines (e.g. IL-1ß, IL-6 and TNF-α). In addition, acupuncture could also act as an immunomodulatory agent, involving the neuroimmune network, T helper and natural killer cells. Traditional Chinese medicine, acupuncture in particular, is widely used within Western health systems and there are many studies done regarding its efficacy in the clinical field. In addition to scientific validation, however, a comparison on a cultural level is also necessary. To build a constructive dialogue, indeed, it is necessary to deconstruct the preconceptions and prejudices concerning both biomedicine and traditional Chinese medicine. In fact, only through deconstruction we can understand that biomedicine and traditional Chinese medicine are both culturally connoted knowledge. In this article it will first be underlined how clinical observations can be better understood if we pay attention to analyzing the cultural context of the medical systems that here interact with each other. (www.actabiomedica.it).


Subject(s)
Acupuncture Therapy , Hypersensitivity , Cytokines , Fruit , Humans , Medicine, Chinese Traditional/methods
19.
Front Immunol ; 13: 914890, 2022.
Article in English | MEDLINE | ID: mdl-35874749

ABSTRACT

Despite some significant therapeutic breakthroughs leading to immunotherapy, a high percentage of patients with non-small cell lung cancer (NSCLC) do not respond to treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying results could be related to the features of the tumor immune microenvironment and the dynamic interactions between a tumor and immune infiltrate. Host-tumor interactions strongly influence the course of disease and response to therapies. Thus, targeting host-associated factors by restoring their physiologic functions altered by the presence of a tumor represents a new therapeutic approach to control tumor development and progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward immunosuppression due to the release of inhibitory factors as well as the presence of immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells, regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells of the hosts such as tumor-associated macrophages, tumor-associated neutrophils, natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting phenotypes and functions. This review highlights the current knowledge of the involvement of host-related factors, including innate and adaptive immunity in orchestrating the tumor cell fate and the primary resistance mechanisms to immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies targeting different aspects of the tumor immune microenvironment (TIME) to prime the host response. Further research dissecting the characteristics and dynamic interactions within the interface host-tumor is necessary to improve a patient fitness immune response and provide answers regarding the immunotherapy efficacy, with the aim to develop more successful treatments for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Immunotherapy/methods , Neoplasm Recurrence, Local , Tumor Microenvironment
20.
Explor Target Antitumor Ther ; 3(5): 694-718, 2022.
Article in English | MEDLINE | ID: mdl-36338516

ABSTRACT

Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFß), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME.

SELECTION OF CITATIONS
SEARCH DETAIL