Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Crit Care ; 28(1): 120, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609959

ABSTRACT

BACKGROUND: Sepsis is associated with high morbidity and mortality, primarily due to systemic inflammation-induced tissue damage, resulting organ failure, and impaired recovery. Regulated extracellular matrix (ECM) turnover is crucial for maintaining tissue homeostasis in health and in response to disease-related changes in the tissue microenvironment. Conversely, uncontrolled turnover can contribute to tissue damage. Systemic Inflammation is implicated to play a role in the regulation of ECM turnover, but the relationship between the two is largely unclear. METHODS: We performed an exploratory study in 10 healthy male volunteers who were intravenously challenged with 2 ng/kg lipopolysaccharide (LPS, derived from Escherichia coli) to induce systemic inflammation. Plasma samples were collected before (T0) and after (T 1 h, 3 h, 6 h and 24 h) the LPS challenge. Furthermore, plasma was collected from 43 patients with septic shock on day 1 of ICU admission. Circulating neo-epitopes of extracellular matrix turnover, including ECM degradation neo-epitopes of collagen type I (C1M), type III (C3M), type IV (C4Ma3), and type VI (C6M), elastin (ELP-3) and fibrin (X-FIB), as well as the ECM synthesis neo-epitopes of collagen type III (PRO-C3), collagen type IV (PRO-C4) and collagen type VI (PRO-C6) were measured by ELISA. Patient outcome data were obtained from electronic patient records. RESULTS: Twenty-four hours after LPS administration, all measured ECM turnover neo-epitopes, except ELP-3, were increased compared to baseline levels. In septic shock patients, concentrations of all measured ECM neo-epitopes were higher compared to healthy controls. In addition, concentrations of C6M, ELP-3 and X-FIB were higher in patients with septic shock who ultimately did not survive (N = 7) compared to those who recovered (N = 36). CONCLUSION: ECM turnover is induced in a model of systemic inflammation in healthy volunteers and was observed in patients with septic shock. Understanding interactions between systemic inflammation and ECM turnover may provide further insight into mechanisms underlying acute and persistent organ failure in sepsis.


Subject(s)
Sepsis , Shock, Septic , Humans , Male , Lipopolysaccharides , Extracellular Matrix , Epitopes , Escherichia coli
2.
BMC Nephrol ; 25(1): 43, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287305

ABSTRACT

BACKGROUND: NGAL and Cystatin C (CysC) as biomarkers for the early detection of AKI are subject to both pathophysiological, as well as patient related heterogeneity. The aim of this study was to investigate the timeline of plasma levels of NGAL and CysC during the first seven days of ICU admission in a mixed ICU population and to relate these to AKI severity during ICU stay. Via these means we aimed to bring clarity to the previously reported heterogeneity of these renal biomarkers. METHODS: Prospective Observation Cohort. Consecutive patients admitted to adult ICU at an academic hospital in the Netherlands between 18-02-2014 and 31-03-2014 were included. Urine output, serum creatinine, plasma NGAL and CysC were recorded during the first seven days of ICU admission. Biomarker expression was analyzed based on KDIGO score and time of AKI diagnosis. RESULTS: 335 patients were included, 110 met KDIGO criteria for AKI. NGAL and CysC plasma levels were higher in AKI patients compared to non-AKI, high variability in individual values resulted in 56% of AKI patients having a false negative, and 32% of non-AKI patients having a false positive. Individual biomarker levels were variable, and no pattern based on KDIGO score was observed. CONCLUSIONS: Plasma NGAL and CysC as biomarkers for the early AKI detection may be subject to pathophysiological, and patient related heterogeneity. Further understanding of individual biomarker profiles may help in their application amongst mixed ICU populations. TRIAL REGISTRATION: The need for informed consent was waived by the Institutional Ethical Review Board of the University Medical Center Groningen (METc 2013 - 174) by Prof. dr. W.A. Kamps on May 17th 2013.


Subject(s)
Acute Kidney Injury , Cystatin C , Adult , Humans , Lipocalin-2 , Prospective Studies , Biomarkers , Creatinine , Intensive Care Units
4.
Thromb Res ; 237: 112-128, 2024 May.
Article in English | MEDLINE | ID: mdl-38579513

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) in sepsis patients increases patient mortality. Endothelial cells are important players in the pathophysiology of sepsis-associated AKI (SA-AKI), yet knowledge regarding their spatiotemporal involvement in coagulation disbalance and leukocyte recruitment is lacking. This study investigated the identity and kinetics of responses of different microvascular compartments in kidney cortex in response to SA-AKI. METHODS: Laser microdissected arterioles, glomeruli, peritubular capillaries, and postcapillary venules from kidneys of mice subjected to cecal ligation and puncture (CLP) were analyzed using RNA sequencing. Differential expression and pathway enrichment analyses identified genes involved in coagulation and inflammation. A selection of these genes was evaluated by RT-qPCR in microvascular compartments of renal biopsies from patients with SA-AKI. The role of two identified genes in lipopolysaccharide-induced endothelial coagulation and inflammatory activation were determined in vitro in HUVEC using siRNA-based gene silencing. RESULTS: CLP-sepsis in mice induced altered expression of approximately 400 genes in the renal microvasculature, with microvascular compartments exhibiting unique spatiotemporal responses. In mice, changes in gene expression related to coagulation and inflammation were most extensive in glomeruli at early and intermediate time points, with high induction of Plat, Serpine1, Thbd, Icam1, Stat3, and Ifitm3. In human SA-AKI, PROCR and STAT3 were induced in postcapillary venules, while SERPINE1 expression was diminished. IFITM3 was increased in arterioles and glomeruli. In vitro studies revealed that STAT3 and IFITM3 partly control endothelial coagulation and inflammatory activation. CONCLUSION: Renal microvascular compartments in mice and humans exhibited heterogeneous changes in coagulation- and inflammation-related gene expression in response to SA-AKI. Additional research should aim at understanding the functional consequences of the here described heterogeneous microvascular responses to establish the usefulness of identified genes as therapeutic targets in SA-AKI.


Subject(s)
Blood Coagulation , Inflammation , Microvessels , Sepsis , Animals , Sepsis/complications , Sepsis/genetics , Mice , Humans , Inflammation/genetics , Inflammation/pathology , Microvessels/pathology , Microvessels/metabolism , Male , Kidney/metabolism , Kidney/pathology , Kidney/blood supply , Mice, Inbred C57BL , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology
5.
J Leukoc Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953175

ABSTRACT

Sepsis is a dysregulated systemic inflammatory response to an infection, which can lead to multiple organ dysfunction syndrome that includes the kidney. Leukocyte recruitment is an important process of the host immune defense in response to sepsis. Endothelial cells (EC) actively regulate leukocyte recruitment by expressing adhesion molecules following the activation of dedicated intracellular signal transduction pathways. Previous studies reported that the expression of adhesion molecules was associated with the activation of endothelial NF-κB p65 and MAPK c-Jun pathways in vitro in response to conditions that mimic processes that occur in inflammation. This study aimed to investigate the spatiotemporal patterns of leukocyte recruitment, expression of adhesion molecules, and endothelial nuclear p65 and c-Jun localization in renal microvascular beds of septic mice. Here, we used a cecal ligation and puncture (CLP) sepsis mouse model and RT-qPCR and immunohistochemical staining. We showed that neutrophils, macrophages, and T lymphocytes were all present in the kidney, yet only neutrophils accumulated in a spatiotemporally discernible pattern, mainly in glomeruli at 4 hours after CLP-sepsis initiation. E-selectin, not VCAM-1, was expressed in glomeruli at the same time point. In a subset of mice at 72 hours after CLP-sepsis started, VCAM-1 expression was prominent in glomerular EC, which was not related to changes in mmu-microRNA(miR)-126a-3p levels, a short noncoding microRNA previously shown to inhibit the translation of VCAM-1 mRNA into protein. Nuclear localization of p65 and c-Jun occurred in EC of all microvascular segments at 4 and 7 hours after CLP-sepsis initiation. In summary, sepsis-induced recruitment of neutrophils, E-selectin expression, and NF-κB p65 and MAPK c-Jun pathway activation coincided in glomeruli at the early stage of the disease. In the other microvascular beds, sepsis led to NF-κB p65 and MAPK c-Jun pathway activation with limited expression of E-selectin and no association with VCAM-1 expression or leukocyte recruitment.

SELECTION OF CITATIONS
SEARCH DETAIL