ABSTRACT
The importance of catalysts today as workhorses in most modern industrial fields cannot be downplayed. As a result, rational design and engineering of targeted catalysts have emerged as key objectives and are dependent on in-depth understanding of complex catalytic dynamics. Synchrotron radiation (SR) light sources with rich advanced experimental methods are being recognized as a comprehensive characterization platform, which can draw a full picture on such multiparameter-involved catalysis under actual working conditions. Herein, the recent progress of catalytic dynamics process studied by the means of various SR techniques is summarized. In particular, SR-based spectroscopic, scattering, and imaging investigations on true catalysts are first introduced with the potential of in situ and operando characterizations. Apparently, the limitations from single SR technique naturally prompt a simple combination of SR techniques to better understand the whole catalysis process. Moreover, the discrepancies among various online testing facilities and batches of samples, along with random/systematic errors introduced by traditional intermittent/asynchronous measurement make it imperative to develop more prolific systems, complementary of multiple SR techniques for deep probing of dynamic catalytic processes. It is believed that the booming new light sources can further enrich the current multiple SR techniques, and thus may realize the true visualization on future catalytic dynamic processes.
ABSTRACT
Despite recent advances in controlling ice formation and growth, it remains a challenge to design anti-icing materials in various fields from atmospheric to biological cryopreservation. Herein, tungsten diselenide (WSe2)-polyvinyl pyrrolidone (PVP) nanoparticles (NPs) are synthesized through one-step solvothermal route. The WSe2-PVP NPs show synergetic ice regulation ability both in the freezing and thawing processes. Molecularly speaking, PVP containing amides group can form hydrogen bonds with water molecules. At a macro level, the WSe2-PVP NPs show adsorption-inhibition and photothermal conversation effects to synergistically restrict ice growth. Meanwhile, WSe2-PVP NPs are for the first time used for the cryopreservation of human umbilical vein endothelial cell (HUVEC)-laden constructs based on rapid freezing with low concentrations of cryoprotectants (CPAs), the experimental results indicate that a minimal concentration (0.5 mg mL-1) of WSe2-PVP NPs can increase the viabilities of HUVECs in the constructs post cryopreservation (from 55.8% to 83.4%) and the cryopreserved constructs can also keep good condition in vivo within 7 days. Therefore, this work provides a novel strategy to synergistically suppress the formation and growth of the ice crystalsfor the cryopreservation of cells, tissues, or organs.
ABSTRACT
Broadly, the oxygen evolution reaction (OER) has been deeply understood as a significant part of energy conversion and storage. Nevertheless, the anions in the OER catalysts have been neglected for various reasons such as inactive sites, dissolution, and oxidation, amongst others. Herein, we applied a model catalyst s-Ni(OH)2 to track the anionic behavior in the catalyst during the electrochemical process to fill this gap. The advanced operando synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy, synchrotron radiation photoelectron spectroscopy (SRPES) depth detection and differential X-ray absorption fine structure (Δ-XAFS) spectrum jointly point out that some oxidized sulfur species (SO42-) will self-optimize new Ni-S bonds during OER process. Such amazing anionic self-optimization (ASO) behavior has never been observed in the OER process. Subsequently, the optimization-derived component shows a significantly improved electrocatalytic performance (activity, stability, etc.) compared to reference catalyst Ni(OH)2. Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst, and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER, respectively. This work demonstrates the vital role of anions in the electrochemical process, which will open up new perspectives for understanding OER and provide some new ideas in related fields (especially catalysis and chemistry).
ABSTRACT
Molybdenum disulfide (MoS2) has attracted much attention as a promising alternative to Pt-based catalysts for highly efficient hydrogen generation. However, it suffers sluggish kinetics for driving the hydrogen evolution reaction (HER) process because of inert basal planes, especially in alkaline solution. Here, we show a combination of heteroatom doping and phase transformation strategies to engineer the in-plane structure of MoS2, that trigger their catalytic activities. Systematic characterizations are performed with advanced aberration-corrected microscopy and X-ray techniques, indicating that an as-designed MoS2 catalyst has a distorted zigzag-chain superlattice in metallic phase, while its in-plane structure was engineered via the incorporation of cobalt and oxygen species. The optimal Co, O dual-doped metallic phase molybdenum disulfide (1T-MoS2) electrocatalyst shows a significantly enhanced HER activity with a low overpotential of 113 mV at 10 mA cm-2 and corresponding small Tafel slope of 50 mV dec-1, accompanied by the robust stability in alkaline media. The calculated turnover frequency is higher than 6.65 H2 s-1 at an overpotential of 200 mV. More in-depth insights from the first-principle calculations illustrate that the water dissociation as a rate-determining step was largely accelerated by the in-plane Co-O-Mo species and fast electron transfer of the catalyst. Benefiting from ingenious design and fine identifications, this work provides a fundamental understanding of the relationships among heteroatom doping, phase transformation, and performance for MoS2-based catalysts.