Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Bioorg Chem ; 145: 107258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447463

ABSTRACT

FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.


Subject(s)
Escherichia coli , Urinary Tract Infections , Humans , Escherichia coli/metabolism , Fimbriae Proteins , Mannose/chemistry , Molecular Docking Simulation
2.
BMC Microbiol ; 23(1): 343, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974074

ABSTRACT

Endophytic fungi, particularly from higher plants have proven to be a rich source of antimicrobial secondary metabolites. The purpose of this study is to examine the antimicrobial potential of three endophytic fungi Aspergillus sp. SA1, Aspergillus sp. SA2, and Aspergillus sp. SA3, cultivated from Nigella sativa seeds against Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Klebsiella pneumoniae (ATCC 13883), MRSA (ATCC 33591), and human pathogen Candida albicans (ATCC 10231). Furthermore, the most active cultivated endophytic fungi were molecularly identified via internal transcribed spacer (ITS) sequencing. HR-ESIMS guided approach has been used successfully in chemical profiling of 26 known bioactive secondary metabolites (1-26), which belongs to different classes of natural compounds such as polyketides, benzenoids, quinones, alcohols, phenols or alkaloids. Finally, in-silico interactions within active site of fungal Cyp51 and bacterial DNA gyrase revealed possibility of being a hit-target for such metabolites as antimicrobials.


Subject(s)
Anti-Infective Agents , Nigella sativa , Humans , Endophytes/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Seeds , Fungi
3.
J Enzyme Inhib Med Chem ; 38(1): 376-386, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36453023

ABSTRACT

A new series of piperine-carboximidamide hybrids VIa-k was developed as a new cytotoxic agent targeting EGFR, BRAF, and CDK2. The antiproliferative effect against four cancer cells was investigated against erlotinib. Hybrids VIc, VIf, VIg, VIi, and VIk have the highest antiproliferative activity. Compounds VIc, VIf, VIg, VIi, and VIk inhibited EGFR with IC50 values ranging from 96 to 127 nM. Compounds VIf and VIk had the most potent inhibitory activity as BRAFV600E (IC50 = 49 and 40 nM, respectively) and were discovered to be potent inhibitors of cancer cell proliferation (GI50 = 44 and 35 nM against four cancer cell lines, respectively). Compound VIk, the most effective derivative as an antiproliferative agent, demonstrated potent anti-CDK2 action with an IC50 value of 12 nM, which is 1.5-fold more potent than the reference dinaciclib. Finally, VIc, VIf, and VIk have a high capacity to inhibit LOX-IMVI cell line survival.


Subject(s)
Polyunsaturated Alkamides , Proto-Oncogene Proteins B-raf , Benzodioxoles/pharmacology , ErbB Receptors
4.
Arch Pharm (Weinheim) ; 356(10): e2300315, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37551741

ABSTRACT

New 5-aminosalicylamide-4-thiazolinone hybrids (27) were efficiently synthesized, characterized, and evaluated to explore their structure-activity relationship as anticancer agents. The antiproliferative activities of the new hybrids were evaluated against eight cancer cell lines using the sulforhodamine B assay. The most potent compound (24b) possessed high selectivity on the tested cell lines in the low micromolar range, with much lower effects on normal fibroblast cells (IC50 > 50 µM). The cell lines derived from leukemia (Jurkat), cervix (HeLa), and colon (HCT116) cancers appeared to be the most sensitive, with IC50 of 2 µM. 24b is the N-ethylamide derivative with p-dimethylaminobenzylidene at position 5 of the 4-thiazolinone moiety. Other N-substituents or arylidene derivatives showed lower activity. Hybrids with salicylamides showed lower activity than with methyl salicylate. The results clearly show that the modifications of the carboxy group and arylidene moiety greatly affect the activity. Investigating the possible molecular mechanisms of these hybrids revealed that they act through cell-cycle arrest and induction of apoptosis and epidermal growth factor receptor (EGFR) inhibition. Molecular docking studies rationalize the molecular interactions of 24b with EGFR. This work expands our knowledge of the structural requirements to improve the anticancer activity of 5-aminosalicylic-thiazolinone hybrids and pave the way toward multitarget anticancer salicylates.


Subject(s)
Antineoplastic Agents , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , ErbB Receptors , HeLa Cells , Molecular Structure , Cell Line, Tumor
5.
Arch Pharm (Weinheim) ; 356(4): e2200464, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36526595

ABSTRACT

As dual EGFR and BRAFV600E inhibitors, 2-(3-cyano-4,6-bis(aryl)-2-oxo-1,2-dihydropyridine-1-yl)-N-(4-cinnamoylphenyl) acetamide derivatives 8-20 were developed. Compounds 8, 12, and 13 showed strong antiproliferative activity when the target compounds were synthesized and tested in vitro against four cancer cell lines. These hybrids have a dual inhibition activity on EGFR and BRAFV600E , according to in vitro studies. The EGFR was inhibited by compounds 8, 12, and 13 with IC50 values between 89 and 110 nM, which were equivalent to those of erlotinib (IC50 = 80 nm). Compound 13 was found to be an effective inhibitor of the proliferation of cancer cells (GI50 = 0.72 µM) and demonstrated hopeful inhibitory activity of BRAFV600E (IC50 = 58 nm), which is superior to erlotinib (IC50 = 65 nm). Compound 13 caused apoptosis and showed cell cycle arrest in the G0/G1phase in a study on the MCF-7 cell line. The new compounds can fit tightly into the active sites of EGFR and BRAFV600E kinases, according to molecular docking analyses.


Subject(s)
Antineoplastic Agents , Chalcones , Humans , Structure-Activity Relationship , Erlotinib Hydrochloride/pharmacology , Cell Line, Tumor , Molecular Docking Simulation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/chemistry , Chalcones/pharmacology , Cell Proliferation , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Structure
6.
Bioorg Chem ; 126: 105922, 2022 09.
Article in English | MEDLINE | ID: mdl-35667253

ABSTRACT

Indazole is a significant class of heterocyclic compounds with a wide range of biological activity. We display here the synthesis and biological evaluation of a novel series of indazole derivatives 6a-v, which are differently substituted at the 6-position of the indazole moiety. The antiproliferative activity of compounds 6a-v was tested against four human cancer cell lines, using the MTT assay and doxorubicin as the reference drug. Compounds 6f, 6i, 6j, 6 s, and 6n were the most effective synthesized derivatives, with GI50 values of 0.77, 0.86, 1.05, 1.05, and 1.07 µM, respectively, against the 4 cell lines, in comparison to the control doxorubicin (GI50 = 1.10 µM). Compounds 6f, 6i, 6j, and 6 s the most potent derivatives as antiproliferative agents, displayed the utmost inhibitory activity against EGFR, and CDK2 and c-Met. Compounds 6f, 6n, and 6 s induced apoptosis through cytochrome C overexpression and activation of the intrinsic apoptotic pathway generated by the investigated compounds.


Subject(s)
Antineoplastic Agents , Indazoles , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Doxorubicin/pharmacology , Drug Design , Drug Screening Assays, Antitumor , Humans , Indazoles/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
7.
Bioorg Chem ; 121: 105693, 2022 04.
Article in English | MEDLINE | ID: mdl-35219045

ABSTRACT

A novel series of pyrimido[5,4-c]quinoline derivatives variously substituted at positions 2 and 5 have been synthesized, in good to excellent yields, via rapid base-catalyzed cyclization reaction of 2,4-dichloroquinoline-3-carbonitrile (5) with guanidine hydrochlorides 6a-c. All the synthesized compounds were screened for their in vitro antiproliferative activity. The most active hybrids 26a-d, 28a-d, and 30B were assessed against topoisomerase (topo) I, topo IIα, CDK2, and EGFR. The majority of the tested compounds exhibited selective topo I inhibitory activity while had weak topo IIα inhibitory action with compounds 30B and 28d, showed better topo I inhibitory activity than the reference camptothecin. Compound 30B, the most potent derivative as antiproliferative agent, exhibited moderate activity against CDK2 (IC50 = 1.60 µM). The results of this assay show that CDK2 is not a potential target for these compounds, implying that the observed cytotoxicity of these compounds is due to a different mechanism. Compounds 30B, 28d, and 28c were found to be the most potent against EGFR and their EGFR inhibitory activities (IC50 = 0.40 ± 0.2, 0.49 ± 0.2, and 0.64 ± 0.3, respectively) relative to the positive control erlotinib (IC50 = 0.07 ± 0.03 µM). These results revealed that topo I and EGFR are attractive targets for this class of chemical compounds.


Subject(s)
Antineoplastic Agents , Quinolines , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors , Molecular Docking Simulation , Molecular Structure , Quinolines/pharmacology , Structure-Activity Relationship
8.
Bioorg Chem ; 106: 104422, 2021 01.
Article in English | MEDLINE | ID: mdl-33248713

ABSTRACT

A novel series of urea-linked ciprofloxacin (CP)-chalcone hybrids 3a-j were synthesized and screened by NCI-60 cancer cell lines as potential cytotoxic agents. Interestingly, compounds 3c and 3j showed remarkable antiproliferative activities against both colon HCT-116 and leukemia SR cancer cells compared to camptothecin, topotecan and staurosporine with IC50 = 2.53, 2.01, 17.36, 12.23 and 3.1 µM for HCT-116 cells, respectively and IC50 = 0.73, 0.64, 3.32, 13.72 and 1.17 µM for leukemia SR cells, respectively. Also, compounds 3c and 3j exhibited inhibitory activities against Topoisomerase (Topo) I with % inhibition = 51.19% and 56.72%, respectively, compared to camptothecin (% inhibition = 60.05%) and Topo IIß with % inhibition = 60.81% and 60.06%, respectively, compared to topotecan (% inhibition = 71.09%). Furthermore, compound 3j arrested the cell cycle of leukemia SR cells at G2/M phase. It induced apoptosis both intrinsically and extrinsically via activation of proteolytic caspases cascade (caspases-3, -8, and -9), release of cytochrome C from mitochondria, upregulation of proapoptotic Bax and down-regulation of Bcl-2 protein level. Thus, the new ciprofloxacin derivative 3j could be considered as a potential lead for further optimization of antitumor agent against leukemia and colorectal carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chalcones/pharmacology , Ciprofloxacin/analogs & derivatives , Ciprofloxacin/pharmacology , Topoisomerase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Caspases/metabolism , Catalytic Domain , Cell Line, Tumor , Chalcones/chemical synthesis , Chalcones/metabolism , Ciprofloxacin/chemical synthesis , Ciprofloxacin/metabolism , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/metabolism , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Docking Simulation , Molecular Structure , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacology , Poly-ADP-Ribose Binding Proteins/chemistry , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/metabolism , bcl-2-Associated X Protein/metabolism
9.
Bioorg Chem ; 116: 105302, 2021 11.
Article in English | MEDLINE | ID: mdl-34464816

ABSTRACT

COX-2 selective drugs have been withdrawn from the market due to cardiovascular side effects, just a few years after their discovery. As a result, a new series of 1,5-diaryl pyrazole carboxamides 19-31 was synthesized as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxic properties. The target compounds were synthesized and tested in vitro against COX-1, COX-2, and sEH enzymes. Compounds 20, 22 and 29 exhibited the most substantial COX-2 inhibitory activity (IC50 values: 0.82-1.12 µM) and had SIs of 13, 18, and 16, respectively, (c.f. celecoxib; SI = 8). Moreover, compounds 20, 22, and 29 were the most potent dual COX-2/sEH inhibitors, with IC50 values of 0.95, 0.80, and 0.85 nM against sEH, respectively, and were more potent than the standard AUDA (IC50 = 1.2 nM). Furthermore, in vivo studies revealed that these compounds were the most active as analgesic/anti-inflammatory derivatives with a good cardioprotective profile against cardiac biomarkers and inflammatory cytokines. Finally, the most active dual inhibitors were docked inside COX-2/sEH active sites to explain their binding modes.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cardiotonic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Acetic Acid , Analgesics/adverse effects , Analgesics/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Behavior, Animal/drug effects , Cardiotonic Agents/adverse effects , Cardiotonic Agents/chemistry , Chondrus , Cyclooxygenase 2/metabolism , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/drug therapy , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Humans , Mice , Molecular Docking Simulation , Molecular Structure , Pyrazoles/adverse effects , Pyrazoles/chemistry , Solubility , Structure-Activity Relationship
10.
Bioorg Chem ; 116: 105363, 2021 11.
Article in English | MEDLINE | ID: mdl-34555629

ABSTRACT

We have discovered a family of synthetic oxazole-based macrocycles to be active against SARS-CoV-2. The synthesis, pharmacological properties, and docking studies of the compounds are reported in this study. The structure of the new macrocycles was confirmed by NMR spectroscopy and mass spectrometry. Compounds 13, 14, and 15a-c were evaluated for their anti-SARS-CoV-2 activity on SARS-COV-2 (NRC-03-nhCoV) virus in Vero-E6 cells. Isopropyl triester 13 and triacid 14 demonstrated superior inhibitory activities against SARS-CoV-2 compared to carboxamides 15a-c. MTT cytotoxicity assays showed that the CC50 (50% cytotoxicity concentration) of 13, 14, and 15a-c ranged from 159.1 to 741.8 µM and their safety indices ranged from 2.50 to 39.1. Study of the viral inhibition via different mechanisms of action (viral adsorption, replication, or virucidal property) showed that 14 had mild virucidal (60%) and inhibitory effects on virus adsorption (66%) at 20 µM concentrations. Compound 13 displayed several inhibitory effects at three levels, but the potency of its action is primarily virucidal. The inhibitory activity of compounds 13, 14, and 15a-c against the enzyme SARS-CoV-2 Mpro was evaluated. Isopropyl triester 13 had a significant inhibition activity against SARS-CoV-2 Mpro with an IC50 of 2.58 µM. Large substituents on the macrocyclic template significantly reduced the inhibitory effects of the compounds. Study of the docking of the compounds in the SARS CoV-2-Mpro active site showed that the most potent macrocycles 13 and 14 exhibited the best fit and highest affinity for the active site binding pocket. Taken together, the present study shows that the new macrocyclic compounds constitute a new family of SARS CoV-2-Mpro inhibitors that are worth being further optimized and developed.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery , Macrocyclic Compounds/pharmacology , Oxazoles/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Oxazoles/chemical synthesis , Oxazoles/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology
11.
Chem Biodivers ; 17(6): e2000100, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32239712

ABSTRACT

A facile and convenient synthesis of new pyridazines suitable for use as antimicrobial agents was reported. The hydrazide intermediate was coupled with various benzaldehydes and/or acetophenones and cyclized instantaneously to afford target pyridazine derivatives. The structures of new pyridazines were confirmed by IR, 1 H- and 13 C-NMR, elemental analysis in addition to representative LC/MS. Antimicrobial activity was screened against 10 bacterial and fungal strains. The new pyridazines showed strong to very strong antibacterial activity against Gram-negative (GNB) bacteria, while none of them showed significant antifungal activity at the same concentration range. Chloro derivatives exhibited the highest antibacterial activity with MICs (0.892-3.744 µg/mL) lower than that of chloramphenicol (2.019-8.078 µg/mL) against E. coli, P. aeruginosa, and S. marcescens. Prediction of ADME parameters, pharmacokinetics, and substrate promiscuity revealed that these new pyridazines could be promising drug candidates. Cytotoxic studies on rat hepatocytes showed how much safe these new pyridazines on living organisms (IC50 >64 µg/mL). MOE docking studies showed a good overlay of these new pyridazines with co-crystallized ligand within an E. coli DNA gyrase subunit B active sites (4KFG).


Subject(s)
Anti-Infective Agents/chemical synthesis , Molecular Docking Simulation , Pyridazines/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Binding Sites , Catalytic Domain , Cell Survival/drug effects , Cells, Cultured , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Half-Life , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Microbial Sensitivity Tests , Pyridazines/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thermodynamics
12.
Bioorg Chem ; 91: 103132, 2019 10.
Article in English | MEDLINE | ID: mdl-31374529

ABSTRACT

A new series of hybrid structures 14a-l containing thiohydantoin as anti-cancer moiety and pyrazole core possessing SO2Me pharmacophore as selective COX-2 moiety was designed and synthesized to be evaluated for both anti-inflammatory and anti-cancer activities. The synthesized compounds were evaluated for their COX inhibition, in vivo anti-inflammatory activity, ulcerogenic liability, in vitro cytotoxic activity and human topoisomerase-1 inhibition. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. Also, all derivatives were significantly less ulcerogenic (ulcer indexes = 2.64-3.87) than ibuprofen (ulcer index = 20.25) and were of acceptable ulcerogenicity when compared with the non-ulcerogenic reference drug celecoxib (ulcer index = 2.99). Regarding anti-cancer activity, most of the target derivatives showed activities against A-549, MCF-7 and HCT-116 cell lines (IC50 = 5.32-17.90, 3.67-19.04 and 3.19-14.87 µM respectively) in comparison with doxorubicin (IC50 = 0.20, 0.50 and 2.44 µM respectively). Compound 14a inhibited the human topoisomerase-1 with IC50 = 29.7 µg/ml while 14b and 14c showed more potent inhibitory activity with IC50 = 26.5 and 23.3 µg/ml. respectively in comparison with camptothecin (IC50 = 20.2 µg/ml). Additionally, COX-2 and human topoisomerase-1 docking studies were carried out to explain the interaction of the synthesized hybrid structures 14a-l with the target enzymes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiohydantoins/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Catalytic Domain , Cell Line, Tumor , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Molecular Docking Simulation , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Thiohydantoins/chemical synthesis , Thiohydantoins/metabolism
13.
Bioorg Med Chem ; 23(17): 5681-92, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26211459

ABSTRACT

Steroid sulfatase (STS) catalyzes the hydrolysis of the sulfate ester group in biologically inactive sulfated steroids to give biologically active steroids. Inhibitors of STS are considered to be potential therapeutics for treating hormone-dependent cancers such as ER(+) breast cancer. A series of 4-substituted 17ß-arylsulfonamides of 17ß-aminoestra-1,3,5(10)-trien-3-ol were prepared and examined as STS inhibitors. The presence of a NO2 or Br at the 2-position of the A-ring resulted in a decrease in potency compared to their A-ring-unsubstituted counterparts. However the presence of a nitro group or fluorine atom at the 4-position of the A-ring resulted in an increase in potency and one of these compounds exhibited a Ki(app) value of 1 nM. Modeling studies provided insight into how these compounds interact with active site residues. The anti-proliferative activity of the 3'-Br, 3'-CF3, 4-NO2-3'-Br and 4-NO2-3'-CF3 derivatives were examined using the NCI 60-cell-line panel and found to have mean graph midpoint values of 1.9-3.4 µM.


Subject(s)
Arylsulfatases/chemistry , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Gonadal Steroid Hormones/adverse effects , Steryl-Sulfatase/antagonists & inhibitors , Sulfonamides/chemistry , Arylsulfatases/pharmacology , Humans , Molecular Structure , Sulfonamides/pharmacology
14.
RSC Adv ; 14(20): 14185-14193, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38690113

ABSTRACT

Chemical investigations of the sea urchin Clypeaster humilis has led to separation of twelve compounds including one new sulfonic acid derivative (7R) tridec-1-en-7-yl hydrogen sulphate (1), first isolated from natural source, pyridine-3-yl methane sulfonate (2), and first isolated from marine organisms, boldine (12), in addition to nine known compounds (3-11), which were isolated for the first time from the genus Clypeaster. Their structures were elucidated based on spectroscopic analyses (1D and 2D NMR), HR-ESI-MS as well as comparison with the previously reported data. The antiviral activity of the crude extract and sulphated compounds were evaluated using MTT colorimetric assay against Coxsackie B4 virus. The crude extract and compound 1 showed very potent antiviral activity with a percentage of inhibition equal to 89.7 ± 0.53% and 86.1 ± 0.92%, respectively. Results of the molecular docking analysis of the isolated compounds within Coxsackie Virus B4 (COX-B4) X-ray crystal structure and quantum chemical calculation for three sulphated compounds are in a consistent adaptation with the in vitro antiviral results. The pharmacokinetic properties (ADME) of isolated compounds were determined.

15.
RSC Adv ; 13(38): 26804-26811, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37692342

ABSTRACT

Malaria as an infectious disease is one of the world's most dangerous parasitic diseases. There is an urgent need for the development of new antimalarial drugs. Natural products are a very rich source of new bioactive compounds. Our research aims to shed light on the recent studies which demonstrated the antimalarial potential of phenylpropanoids as a major natural-products class. This study involves an in silico analysis of naturally-occurring phenylpropanoids and phenylethanoids which showed 25 compounds with moderate to strong binding affinity to various amino acid residues lining the active site; P. falciparum kinase (PfPK5), P. falciparum cytochrome bc1 complex (cyt bc1), and P. falciparum lysyl-tRNA synthetase (PfKRS1); of Plasmodium falciparum parasite, a unicellular protozoan which causes the most severe and life-threatening malaria. Furthermore, the study was augmented by the assessment of antiplasmodial activity of glandularin, a naturally occurring dibenzylbutyrolactolic lignan, against chloroquine-sensitive 3D7 strain of P. falciparum using SYBR green I-based fluorescence assay, which showed high antimalarial activity with IC50 value of 11.2 µM after 24 hours of incubation. Our results highlight phenylpropanoids and glandularin in particular as a promising chemical lead for development of antimalarial drugs.

16.
RSC Med Chem ; 14(12): 2714-2730, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38107181

ABSTRACT

A new series inspired by combining fragments from nitazoxanide (NTZ) and 4-aminosalicylic acid (4-ASA) was synthesized and screened for in vitro antibacterial and antimycobacterial activities. The majority showed higher antibacterial potency than NTZ against all the screened strains, notably, 5f, 5j, 5n and 5o with MICs of 0.87-9.00 µM. Compounds 5c, 5n and 5o revealed higher potency than ciprofloxacin against K. pneumoniae, while 5i was equipotent. For E. faecalis, 3b, 5j, and 5k showed higher potency than ciprofloxacin. 5j was more potent against P. aeruginosa than ciprofloxacin, while 5n was more potent against S. aureus with an MIC of 0.87 µM. 5f showed equipotency to ciprofloxacin against H. pylori with an MIC of 1.74 µM. Compounds 3a and 3b (4-azidoNTZ, MIC 4.47 µM) are 2 and 5-fold more potent against Mycobacterium tuberculosis (Mtb H37Rv) than NTZ (MIC 20.23 µM) and safer. 4-Azidation and/or acetylation of NTZ improve both activities, while introducing 1,2,3-triazoles improves the antibacterial activity. Molecular docking studies within pyruvate ferredoxin oxidoreductase (PFOR), glucosamine-6-phosphate synthase (G6PS) and dihydrofolate reductase (DHFR) active sites were performed to explore the possible molecular mechanisms of actions. Acceptable drug-likeness properties were found. This study may shed light on further rational design of substituted NTZ as broad-spectrum more potent antimicrobial candidates.

17.
Nat Prod Res ; 37(4): 598-602, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35400256

ABSTRACT

The Chelonaplysilla genus possesses a numerous bioactive diterpenes with anti-inflammatory and cytotoxic effects. The current study aimed to assess the chemical composition of C. erecta crude extract (CECE) based on its metabolomic profile that has been integrated with neural network-based virtual screening and molecular docking using liquid chromatography with high resolution mass spectrometry (LCHR-MS). In addition to the estimation of the antitumor activity of the same extract via anti-interleukin-17A (IL-17) action, along with its formulated spanlastics preparation. The CECE markedly displayed growth inhibition for HepG-2 cells at IC50 value 16.5 ± 0.8 µg/mL, whereas the spanlastic formulation revealed more eminent antitumor effect against Caco-2 cells (IC50 = 2.8 ± 0.03 µg/mL). Among the dereplicated compounds, macfarlandin F (16) and pourewanone (25) demonstrated the highest potential with co-crystallized ligand 63 O within the active site of IL-17A in molecular docking studies. These findings rationalized the antitumor mechanism of marine organism for future chemotherapeutic applications.


Subject(s)
Antineoplastic Agents , Diterpenes , Porifera , Animals , Humans , Molecular Docking Simulation , Caco-2 Cells , Porifera/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
18.
Bioorg Med Chem ; 20(4): 1535-44, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264754

ABSTRACT

Steroid sulfatase (STS) catalyzes the desulfation of biologically inactive sulfated steroids to yield biologically active desulfated steroids and is currently being examined as a target for therapeutic intervention for the treatment of breast and other steroid-dependent cancers. Here we report the synthesis of a series of 17ß-arylsulfonamides of 17ß-aminoestra-1,3,5(10)-trien-3-ol and their evaluation as inhibitors of STS. Some of these compounds are among the most potent reversible STS inhibitors reported to date. Introducing n-alkyl groups into the 4'-position of the 17ß-benzenesulfonamide derivative resulted in an increase in potency with the n-butyl derivative exhibiting the best potency with an IC(50) of 26 nM. A further increase in carbon units (to n-pentyl) resulted in a decrease in potency. Branching of the 4'-n-propyl group resulted in a decrease in potency while branching of the 4'-n-butyl group (to a tert-butyl group) resulted in a slight increase in potency (IC(50)=18 nM). Studies with 3'- and 4'-substituted substituted 17ß-benzenesulfonamides with small electron donating and electron withdrawing groups revealed the 3'-bromo and 3'-trifluoromethyl derivatives to be excellent inhibitors with IC(50)'s of 30 and 23 nM, respectively. The 17ß-2'-naphthalenesulfonamide was also an excellent inhibitor (IC(50)=20 nM) while the 17ß-4'-phenylbenzenesulfonamide derivative was the most potent inhibitor of all the compounds studied with an IC(50) of 9 nM.


Subject(s)
Arylsulfatases/chemistry , Steryl-Sulfatase/antagonists & inhibitors , Sulfonamides/chemistry , Arylsulfatases/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Sulfonamides/pharmacology
19.
Plants (Basel) ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684165

ABSTRACT

LC-HRMS-assisted chemical profiling of Zizyphus mauritiana fruit extract (ZFE) led to the dereplication of 28 metabolites. Furthermore, wound healing activity of ZFE in 24 adult male New Zealand Dutch strain albino rabbits was investigated in-vivo supported by histopathological investigation. Additionally, the molecular mechanism was studied through different in-vitro investigations as well as, studying both relative gene expression and relative protein expression patterns. Moreover, the antioxidant activity of ZFE extract was examined using two in-vitro assays including hydrogen peroxide and superoxide radical scavenging activities that showed promising antioxidant potential. Topical application of the extract on excision wounds showed a significant increase in the wound healing rate (p < 0.001) in comparison to the untreated and MEBO®-treated groups, enhancing TGF-ß1, VEGF, Type I collagen expression, and suppressing inflammatory markers (TNF-α and IL-1ß). Moreover, an in silico molecular docking against TNFα, TGFBR1, and IL-1ß showed that some of the molecules identified in ZFE can bind to the three wound-healing related protein actives sites. Additionally, PASS computational calculation of antioxidant activity revealed potential activity of three phenolic compounds (Pa score > 0.5). Consequently, ZFE may be a potential alternative medication helping wound healing owing to its antioxidant and anti-inflammatory activities.

20.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36015154

ABSTRACT

The apoptotic antiproliferative actions of our previously reported CB1 allosteric modulators 5-chlorobenzofuran-2-carboxamide derivatives VIIa-j prompted us to develop and synthesise a novel series of indole-2-carboxamide derivatives 5a-k, 6a-c, and 7. Different spectroscopic methods of analysis were used to validate the novel compounds. Using the MTT assay method, the novel compounds were examined for antiproliferative activity against four distinct cancer cell lines. Compounds 5a-k, 6a-c, and 7 demonstrated greater antiproliferative activity against the breast cancer cell line (MCF-7) than other tested cancer cell lines, and 5a-k (which contain the phenethyl moiety in their backbone structure) demonstrated greater potency than 6a-c and 7, indicating the importance of the phenethyl moiety for antiproliferative action. Compared to reference doxorubicin (GI50 = 1.10 µM), compounds 5d, 5e, 5h, 5i, 5j, and 5k were the most effective of the synthesised derivatives, with GI50 ranging from 0.95 µM to 1.50 µM. Compounds 5d, 5e, 5h, 5i, 5j, and 5k were tested for their inhibitory impact on EGFR and CDK2, and the results indicated that the compounds tested had strong antiproliferative activity and are effective at suppressing both CDK2 and EGFR. Moreover, the studied compounds induced apoptosis with high potency, as evidenced by their effects on apoptotic markers such as Caspases 3, 8, 9, Cytochrome C, Bax, Bcl2, and p53.

SELECTION OF CITATIONS
SEARCH DETAIL