Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(32): e2217800120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37498871

ABSTRACT

Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.


Subject(s)
Chronic Pain , Neuralgia , Animals , Hyperalgesia/chemically induced , Chronic Pain/genetics , Chronic Pain/therapy , Macaca mulatta/metabolism , Neuralgia/genetics , Neuralgia/therapy , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Ganglia, Spinal/metabolism , NAV1.8 Voltage-Gated Sodium Channel
2.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37972067

ABSTRACT

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Subject(s)
Chronic Pain , Peptidomimetics , Rats , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Rats, Sprague-Dawley , Peptidomimetics/pharmacology , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
3.
Brain ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829801

ABSTRACT

The prevalence of many pain conditions often differs between sexes. In addition to such quantitative distinctions, sexual dimorphism may also be qualitative reflecting differences in mechanisms that promote pain in men and women. A major factor that influences the likelihood of pain perception is the threshold for activation of nociceptors. Peripheral nociceptor sensitization has been demonstrated to be clinically relevant in many pain conditions. Whether peripheral nociceptor sensitization can occur in a sexually dimorphic fashion, however, has not been extensively studied. To address this fundamental knowledge gap, we used patch clamp electrophysiology to evaluate the excitability of dorsal root ganglion neurones from male or female rodents, non-human primates, and humans following exposure to putative sensitizing agents. Previous studies from our laboratory, and others, have shown that prolactin promotes female-selective pain responses in rodents. Consistent with these observations, dorsal root ganglion neurones from female, but not male, mice were selectively sensitized by exposure to prolactin. The sensitizing action of prolactin was also confirmed in dorsal root ganglion neurones from a female macaque monkey. Critically, neurones recovered from female, but not male, human donors were also selectively sensitized by prolactin. In the course of studies of sleep and pain, we unexpectedly observed that an orexin antagonist could normalize pain responses in male animals. We found that orexin B produced sensitization of male, but not female, mouse, macaque, and human dorsal root ganglion neurones. Consistent with functional responses, increased prolactin receptor and orexin receptor 2 expression was observed in female and male mouse dorsal root ganglia, respectively. Immunohistochemical interrogation of cultured human sensory neurones and whole dorsal root ganglia also suggested increased prolactin receptor expression in females and orexin receptor 2 expression in males. These data reveal a functional double dissociation of nociceptor sensitization by sex, which is conserved across species and is likely directly relevant to human pain conditions. To our knowledge, this is the first demonstration of functional sexual dimorphism in human sensory neurones. Patient sex is currently not a common consideration for the choice of pain therapy. Precision medicine, based on patient sex could improve therapeutic outcomes by selectively targeting mechanisms promoting pain in women or men. Additional implications of these findings are that the design of clinical trials for pain therapies should consider the proportions of male or female patients enrolled. Lastly, re-examination of selected past failed clinical trials with subgroup analysis by sex may be warranted.

4.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33894126

ABSTRACT

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Subject(s)
Agenesis of Corpus Callosum/genetics , Cerebellum/abnormalities , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Adult , Agenesis of Corpus Callosum/diagnostic imaging , Cerebellum/diagnostic imaging , Child , Child, Preschool , Female , Humans , Hydrolases/chemistry , Hydrolases/genetics , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Male , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Neurodevelopmental Disorders/diagnostic imaging , Tubulin/metabolism , Young Adult
5.
Brain ; 146(3): 1186-1199, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35485490

ABSTRACT

Increased vigilance in settings of potential threats or in states of vulnerability related to pain is important for survival. Pain disrupts sleep and conversely, sleep disruption enhances pain, but the underlying mechanisms remain unknown. Chronic pain engages brain stress circuits and increases secretion of dynorphin, an endogenous ligand of the kappa opioid receptor (KOR). We therefore hypothesized that hypothalamic dynorphin/KOR signalling may be a previously unknown mechanism that is recruited in pathological conditions requiring increased vigilance. We investigated the role of KOR in wakefulness, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep in freely moving naïve mice and in mice with neuropathic pain induced by partial sciatic nerve ligation using EEG/EMG recordings. Systemic continuous administration of U69,593, a KOR agonist, over 5 days through an osmotic minipump decreased the amount of NREM and REM sleep and increased sleep fragmentation in naïve mice throughout the light-dark sleep cycle. We used KORcre mice to selectively express a Gi-coupled designer receptor activated by designer drugs (Gi-DREADD) in KORcre neurons of the hypothalamic paraventricular nucleus, a key node of the hypothalamic-pituitary-adrenal stress response. Sustained activation of Gi-DREADD with clozapine-N-oxide delivered in drinking water over 4 days, disrupted sleep in these mice in a similar way as systemic U69,593. Mice with chronic neuropathic pain also showed disrupted NREM and total sleep that was normalized by systemic administration of two structurally different KOR antagonists, norbinaltorphimine and NMRA-140, currently in phase II clinical development, or by CRISPR/Cas9 editing of paraventricular nucleus KOR, consistent with endogenous KOR activation disrupting sleep in chronic pain. Unexpectedly, REM sleep was diminished by either systemic KOR antagonist or by CRISPR/Cas9 editing of paraventricular nucleus KOR in sham-operated mice. Our findings reveal previously unknown physiological and pathophysiological roles of dynorphin/KOR in eliciting arousal. Physiologically, dynorphin/KOR signalling affects transitions between sleep stages that promote REM sleep. Furthermore, while KOR antagonists do not promote somnolence in the absence of pain, they normalized disrupted sleep in chronic pain, revealing a pathophysiological role of KOR signalling that is selectively recruited to promote vigilance, increasing chances of survival. Notably, while this mechanism is likely beneficial in the short-term, disruption of the homeostatic need for sleep over longer periods may become maladaptive resulting in sustained pain chronicity. A novel approach for treatment of chronic pain may thus result from normalization of chronic pain-related sleep disruption by KOR antagonism.


Subject(s)
Chronic Pain , Neuralgia , Mice , Animals , Receptors, Opioid, kappa , Dynorphins , Wakefulness , Narcotic Antagonists/pharmacology
6.
Neurobiol Dis ; 183: 106164, 2023 07.
Article in English | MEDLINE | ID: mdl-37217103

ABSTRACT

Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.


Subject(s)
Neuralgia , Nociception , Mice , Animals , Nociception/physiology , GABAergic Neurons , Geniculate Bodies/physiology , Phototherapy , Neuralgia/therapy
7.
Brain ; 145(8): 2894-2909, 2022 08 27.
Article in English | MEDLINE | ID: mdl-35325034

ABSTRACT

Migraine headache results from activation of meningeal nociceptors, however, the hypothalamus is activated many hours before the emergence of pain. How hypothalamic neural mechanisms may influence trigeminal nociceptor function remains unknown. Stress is a common migraine trigger that engages hypothalamic dynorphin/kappa opioid receptor (KOR) signalling and increases circulating prolactin. Prolactin acts at both long and short prolactin receptor isoforms that are expressed in trigeminal afferents. Following downregulation of the prolactin receptor long isoform, prolactin signalling at the prolactin receptor short isoform sensitizes nociceptors selectively in females. We hypothesized that stress may activate the kappa opioid receptor on tuberoinfundibular dopaminergic neurons to increase circulating prolactin leading to female-selective sensitization of trigeminal nociceptors through dysregulation of prolactin receptor isoforms. A mouse two-hit hyperalgesic priming model of migraine was used. Repeated restraint stress promoted vulnerability (i.e. first-hit priming) to a subsequent subthreshold (i.e. second-hit) stimulus from inhalational umbellulone, a TRPA1 agonist. Periorbital cutaneous allodynia served as a surrogate of migraine-like pain. Female and male KORCre; R26lsl-Sun1-GFP mice showed a high percentage of KORCre labelled neurons co-localized in tyrosine hydroxylase-positive cells in the hypothalamic arcuate nucleus. Restraint stress increased circulating prolactin to a greater degree in females. Stress-primed, but not control, mice of both sexes developed periorbital allodynia following inhalational umbellulone. Gi-DREADD activation (i.e. inhibition through Gi-coupled signalling) in KORCre neurons in the arcuate nucleus also increased circulating prolactin and repeated chemogenetic manipulation of these neurons primed mice of both sexes to umbellulone. Clustered regularly interspaced short palindromic repeats-Cas9 deletion of the arcuate nucleus KOR prevented restraint stress-induced prolactin release in female mice and priming from repeated stress episodes in both sexes. Inhibition of circulating prolactin occurred with systemic cabergoline, a dopamine D2 receptor agonist, blocked priming selectively in females. Repeated restraint stress downregulated the prolactin receptor long isoform in the trigeminal ganglia of female mice. Deletion of prolactin receptor in trigeminal ganglia by nasal clustered regularly interspaced short palindromic repeats-Cas9 targeting both prolactin receptor isoforms prevented stress-induced priming in female mice. Stress-induced activation of hypothalamic KOR increases circulating prolactin resulting in trigeminal downregulation of prolactin receptor long and pain responses to a normally innocuous TRPA1 stimulus. These are the first data that provide a mechanistic link between stress-induced hypothalamic activation and the trigeminal nociceptor effectors that produce trigeminal sensitization and migraine-like pain. This sexually dimorphic mechanism may help to explain female prevalence of migraine. KOR antagonists, currently in phase II clinical trials, may be useful as migraine preventives in both sexes, while dopamine agonists and prolactin/ prolactin receptor antibodies may improve therapy for migraine, and other stress-related neurological disorders, in females.


Subject(s)
Migraine Disorders , Nociceptors , Animals , Dopaminergic Neurons , Female , Hyperalgesia , Hypothalamus , Male , Mice , Pain , Prolactin , Receptors, Opioid, kappa , Receptors, Prolactin
8.
Biochem Biophys Res Commun ; 591: 13-19, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34990903

ABSTRACT

Inhalation of the fungus Alternaria alternata is associated with an increased risk of allergic asthma development and exacerbations. Recent work in acute exposure animal models suggests that A. alternata-induced asthma symptoms, which include inflammation, mucus overproduction and airway hyperresponsiveness, are due to A. alternata proteases that act via protease-activated receptor-2 (PAR2). However, because other active components present in A. alternata may be contributing to asthma pathophysiology through alternative signaling, the specific role PAR2 plays in asthma initiation and maintenance remains undefined. Airway epithelial cells provide the first encounter with A. alternata and are thought to play an important role in initiating the physiologic response. To better understand the role for PAR2 airway epithelial signaling we created a PAR2-deficient human bronchial epithelial cell line (16HBEPAR-/-) from a model bronchial parental line (16HBE14o-). Comparison of in vitro physiologic responses in these cell lines demonstrated a complete loss of PAR2 agonist (2at-LIGRL-NH2) response and significantly attenuated protease (trypsin and elastase) and A. alternata responses in the 16HBEPAR-/- line. Apical application of A. alternata to 16HBE14o- and 16HBEPAR2-/- grown at air-liquid interface demonstrated rapid, PAR2-dependent and independent, inflammatory cytokine, chemokine and growth factor basolateral release. In conclusion, the novel human PAR2-deficient cell line allows for direct in vitro examination of the role(s) for PAR2 in allergen challenge with polarized human airway epithelial cells.


Subject(s)
Alternaria/physiology , Bronchi/pathology , Epithelial Cells/microbiology , Inflammation/pathology , Receptor, PAR-2/metabolism , Signal Transduction , Base Sequence , CRISPR-Cas Systems/genetics , Cell Line , Epithelial Cells/metabolism , Humans
9.
Cephalalgia ; 42(3): 197-208, 2022 03.
Article in English | MEDLINE | ID: mdl-34510920

ABSTRACT

OBJECTIVE: Determination of possible sex differences in mechanisms promoting migraine progression and the contribution of prolactin and the prolactin long (PRLR-L) and short (PRLR-S) receptor isoforms. BACKGROUND: The majority of patients with chronic migraine and medication overuse headache are female. Prolactin is present at higher levels in women and increases migraine. Prolactin signaling at the PRLR-S selectively sensitizes nociceptors in female rodents, while expression of the PRLR-L is protective. METHODS: Medication overuse headache was modeled by repeated sumatriptan administration in male and female mice. Periorbital and hindpaw cutaneous allodynia served as a surrogate of migraine-like pain. PRLR-L and PRLR-S isoforms were measured in the trigeminal ganglion with western blotting. Possible co-localization of PRLR with serotonin 5HT1B and 5HT1D receptors was determined with RNAscope. Cabergoline, a dopamine receptor agonist that inhibits circulating prolactin, was co-administered with sumatriptan. Nasal administration of CRISPR/Cas9 plasmid was used to edit expression of both PRLR isoforms. RESULTS: PRLR was co-localized with 5HT1B or 5HT1D receptors in the ophthalmic region of female trigeminal ganglion. A single injection of sumatriptan increased serum PRL levels in female mice. Repeated sumatriptan promoted cutaneous allodynia in both sexes but down-regulated trigeminal ganglion PRLR-L, without altering PRLR-S, only in females. Co-administration of sumatriptan with cabergoline prevented allodynia and down-regulation of PRLR-L only in females. CRISPR/Cas9 editing of both PRLR isoforms in the trigeminal ganglion prevented sumatriptan-induced periorbital allodynia in females. INTERPRETATION: We identified a sexually dimorphic mechanism of migraine chronification that involves down-regulation of PRLR-L and increased signaling of circulating prolactin at PRLR-S. These studies reveal a previously unrecognized neuroendocrine mechanism linking the hypothalamus to nociceptor sensitization that increases the risk of migraine pain in females and suggest opportunities for novel sex-specific therapies including gene editing through nasal delivery of CRISPR/Cas9 constructs.


Subject(s)
Headache Disorders, Secondary , Migraine Disorders , Animals , Female , Humans , Hyperalgesia/chemically induced , Male , Mice , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Prolactin/adverse effects , Prolactin/metabolism , Sumatriptan/pharmacology
10.
Proc Natl Acad Sci U S A ; 116(31): 15696-15705, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308225

ABSTRACT

The neuronal cell death-promoting loss of cytoplasmic K+ following injury is mediated by an increase in Kv2.1 potassium channels in the plasma membrane. This phenomenon relies on Kv2.1 binding to syntaxin 1A via 9 amino acids within the channel intrinsically disordered C terminus. Preventing this interaction with a cell and blood-brain barrier-permeant peptide is neuroprotective in an in vivo stroke model. Here a rational approach was applied to define the key molecular interactions between syntaxin and Kv2.1, some of which are shared with mammalian uncoordinated-18 (munc18). Armed with this information, we found a small molecule Kv2.1-syntaxin-binding inhibitor (cpd5) that improves cortical neuron survival by suppressing SNARE-dependent enhancement of Kv2.1-mediated currents following excitotoxic injury. We validated that cpd5 selectively displaces Kv2.1-syntaxin-binding peptides from syntaxin and, at higher concentrations, munc18, but without affecting either synaptic or neuronal intrinsic properties in brain tissue slices at neuroprotective concentrations. Collectively, our findings provide insight into the role of syntaxin in neuronal cell death and validate an important target for neuroprotection.


Subject(s)
Brain/metabolism , Neuroprotective Agents , Shab Potassium Channels/metabolism , Syntaxin 1/metabolism , Animals , Munc18 Proteins/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Rats , SNARE Proteins/metabolism
11.
Neurobiol Dis ; 149: 105224, 2021 02.
Article in English | MEDLINE | ID: mdl-33359140

ABSTRACT

The TATA-box binding protein associated factor 1 (TAF1) is part of the TFIID complex that plays a key role during the initiation of transcription. Variants of TAF1 are associated with neurodevelopmental disorders. Previously, we found that CRISPR/Cas9 based editing of the TAF1 gene disrupts the morphology of the cerebral cortex and blunts the expression as well as the function of the CaV3.1 (T-type) voltage gated calcium channel. Here, we tested the efficacy of SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate), a T-type calcium channel enhancer, in an animal model of TAF1 intellectual disability (ID) syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21, the rat pups were given SAK3 (0.25 mg/kg, p.o.) or vehicle for 14 days (i.e. till post-natal day 35) and then subjected to behavioral, morphological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued locomotion abnormalities associated with TAF1 gene editing. SAK3 treatment prevented the loss of cortical neurons and GFAP-positive astrocytes observed after TAF1 gene editing. In addition, SAK3 protected cells from apoptosis. SAK3 also restored the Brain-derived neurotrophic factor/protein kinase B/Glycogen Synthase Kinase 3 Beta (BDNF/AKT/GSK3ß) signaling axis in TAF1 edited animals. Finally, SAK3 normalized the levels of three GSK3ß substrates - CaV3.1, FOXP2, and CRMP2. We conclude that the T-type calcium channel enhancer SAK3 is beneficial against the deleterious effects of TAF1 gene-editing, in part, by stimulating the BDNF/AKT/GSK3ß signaling pathway.


Subject(s)
Calcium Channels, T-Type/metabolism , Disease Models, Animal , Histone Acetyltransferases/deficiency , Imidazoles/administration & dosage , Intellectual Disability/drug therapy , Intellectual Disability/metabolism , Spiro Compounds/administration & dosage , TATA-Binding Protein Associated Factors/deficiency , Transcription Factor TFIID/deficiency , Animals , Animals, Newborn , Drug Evaluation, Preclinical/methods , Female , Histone Acetyltransferases/genetics , Injections, Intraventricular , Intellectual Disability/genetics , Locomotion/drug effects , Locomotion/physiology , Pregnancy , Rats , Rats, Sprague-Dawley , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics
12.
Nat Methods ; 15(11): 969-976, 2018 11.
Article in English | MEDLINE | ID: mdl-30377377

ABSTRACT

Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.


Subject(s)
Action Potentials , Hyperalgesia/physiopathology , Neurons/physiology , Optogenetics , Pain/physiopathology , Peripheral Nervous System Diseases/physiopathology , Recombinant Fusion Proteins/metabolism , Animals , Female , Light , Male , Mice, Inbred C57BL , Neurons/cytology , Paclitaxel/toxicity , Pain/chemically induced , Peripheral Nervous System Diseases/chemically induced , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/genetics , Zebrafish
13.
Neurobiol Dis ; 143: 105006, 2020 09.
Article in English | MEDLINE | ID: mdl-32622085

ABSTRACT

T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.


Subject(s)
Cerebellum/drug effects , Histone Acetyltransferases/genetics , Imidazoles/pharmacology , Intellectual Disability/physiopathology , Neurons/drug effects , Spiro Compounds/pharmacology , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Animals , Calcium Channels, T-Type/drug effects , Calcium Channels, T-Type/metabolism , Disease Models, Animal , Intellectual Disability/genetics , Rats , Rats, Sprague-Dawley , Syndrome
14.
J Neurosci ; 38(17): 4212-4229, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29636392

ABSTRACT

Cocaine addicts display increased sensitivity to drug-associated cues, due in part to changes in the prelimbic prefrontal cortex (PL-PFC). The cellular mechanisms underlying cue-induced reinstatement of cocaine seeking remain unknown. Reinforcement learning for addictive drugs may produce persistent maladaptations in intrinsic excitability within sparse subsets of PFC pyramidal neurons. Using a model of relapse in male rats, we sampled >600 neurons to examine spike frequency adaptation (SFA) and afterhyperpolarizations (AHPs), two systems that attenuate low-frequency inputs to regulate neuronal synchronization. We observed that training to self-administer cocaine or nondrug (sucrose) reinforcers decreased SFA and AHPs in a subpopulation of PL-PFC neurons. Only with cocaine did the resulting hyperexcitability persist through extinction training and increase during reinstatement. In neurons with intact SFA, dopamine enhanced excitability by inhibiting Kv7 potassium channels that mediate SFA. However, dopamine effects were occluded in neurons from cocaine-experienced rats, where SFA and AHPs were reduced. Pharmacological stabilization of Kv7 channels with retigabine restored SFA and Kv7 channel function in neuroadapted cells. When microinjected bilaterally into the PL-PFC 10 min before reinstatement testing, retigabine reduced cue-induced reinstatement of cocaine seeking. Last, using cFos-GFP transgenic rats, we found that the loss of SFA correlated with the expression of cFos-GFP following both extinction and re-exposure to drug-associated cues. Together, these data suggest that cocaine self-administration desensitizes inhibitory Kv7 channels in a subpopulation of PL-PFC neurons. This subpopulation of neurons may represent a persistent neural ensemble responsible for driving drug seeking in response to cues.SIGNIFICANCE STATEMENT Long after the cessation of drug use, cues associated with cocaine still elicit drug-seeking behavior, in part by activation of the prelimbic prefrontal cortex (PL-PFC). The underlying cellular mechanisms governing these activated neurons remain unclear. Using a rat model of relapse to cocaine seeking, we identified a population of PL-PFC neurons that become hyperexcitable following chronic cocaine self-administration. These neurons show persistent loss of spike frequency adaptation, reduced afterhyperpolarizations, decreased sensitivity to dopamine, and reduced Kv7 channel-mediated inhibition. Stabilization of Kv7 channel function with retigabine normalized neuronal excitability, restored Kv7 channel currents, and reduced drug-seeking behavior when administered into the PL-PFC before reinstatement. These data highlight a persistent adaptation in a subset of PL-PFC neurons that may contribute to relapse vulnerability.


Subject(s)
Cocaine-Related Disorders/physiopathology , Cues , Drug-Seeking Behavior , KCNQ Potassium Channels/metabolism , Prefrontal Cortex/physiology , Action Potentials , Adaptation, Physiological , Animals , Carbamates/pharmacology , Cocaine-Related Disorders/metabolism , Male , Membrane Transport Modulators/pharmacology , Phenylenediamines/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
16.
Neurobiol Dis ; 132: 104539, 2019 12.
Article in English | MEDLINE | ID: mdl-31344492

ABSTRACT

TAF1/MRSX33 intellectual disability syndrome is an X-linked disorder caused by loss-of-function mutations in the TAF1 gene. How these mutations cause dysmorphology, hypotonia, intellectual and motor defects is unknown. Mouse models which have embryonically targeted TAF1 have failed, possibly due to TAF1 being essential for viability, preferentially expressed in early brain development, and intolerant of mutation. Novel animal models are valuable tools for understanding neuronal pathology. Here, we report the development and characterization of a novel animal model for TAF1 ID syndrome in which the TAF1 gene is deleted in embryonic rats using clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) technology and somatic brain transgenesis mediated by lentiviral transduction. Rat pups, post-natal day 3, were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 vectors. Rats were subjected to a battery of behavioral tests followed by histopathological analyses of brains at post-natal day 14 and day 35. TAF1-edited rats exhibited behavioral deficits at both the neonatal and juvenile stages of development. Deletion of TAF1 lead to a hypoplasia and loss of the Purkinje cells. We also observed a decreased in GFAP positive astrocytes and an increase in Iba1 positive microglia within the granular layer of the cerebellum in TAF1-edited animals. Immunostaining revealed a reduction in the expression of the CaV3.1 T-type calcium channel. Abnormal motor symptoms in TAF1-edited rats were associated with irregular cerebellar output caused by changes in the intrinsic activity of the Purkinje cells due to loss of pre-synaptic CaV3.1. This animal model provides a powerful new tool for studies of neuronal dysfunction in conditions associated with TAF1 abnormalities and should prove useful for developing therapeutic strategies to treat TAF1 ID syndrome.


Subject(s)
CRISPR-Cas Systems/genetics , Cerebellum/pathology , Cerebral Cortex/pathology , Gene Editing/methods , Histone Acetyltransferases/genetics , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Animals , Animals, Newborn , Cerebellum/abnormalities , Cerebellum/physiology , Cerebral Cortex/abnormalities , Cerebral Cortex/physiology , Female , Injections, Intraventricular , Locomotion/physiology , Organ Culture Techniques , Pregnancy , Rats , Rats, Sprague-Dawley
17.
Cell Mol Life Sci ; 75(1): 67-79, 2018 01.
Article in English | MEDLINE | ID: mdl-28864883

ABSTRACT

Transcriptional regulation of proteins involved in neuronal polarity is a key process that underlies the ability of neurons to transfer information in the central nervous system. The Collapsin Response Mediator Protein (CRMP) family is best known for its role in neurite outgrowth regulation conducting to neuronal polarity and axonal guidance, including CRMP5 that drives dendrite differentiation. Although CRMP5 is able to control dendritic development, the regulation of its expression remains poorly understood. Here we identify a Sox5 consensus binding sequence in the putative promoter sequence upstream of the CRMP5 gene. By luciferase assays we show that Sox5 increases CRMP5 promoter activity, but not if the putative Sox5 binding site is mutated. We demonstrate that Sox5 can physically bind to the CRMP5 promoter DNA in gel mobility shift and chromatin immunoprecipitation assays. Using a combination of real-time RT-PCR and quantitative immunocytochemistry, we provide further evidence for a Sox5-dependent upregulation of CRMP5 transcription and protein expression in N1E115 cells: a commonly used cell line model for neuronal differentiation. Furthermore, we report that increasing Sox5 levels in this neuronal cell line inhibits neurite outgrowth. This inhibition requires CRMP5 because CRMP5 knockdown prevents the Sox5-dependent effect. We confirm the physiological relevance of the Sox5-CRMP5 pathway in the regulation of neurite outgrowth using mouse primary hippocampal neurons. These findings identify Sox5 as a critical modulator of neurite outgrowth through the selective activation of CRMP5 expression.


Subject(s)
Amidohydrolases/genetics , Gene Expression Regulation , Neuronal Outgrowth/genetics , SOXD Transcription Factors/genetics , Amidohydrolases/metabolism , Animals , Binding Sites/genetics , Brain/embryology , Brain/metabolism , Cell Line, Tumor , Humans , Hydrolases , Mice , Microtubule-Associated Proteins , Mutation , Neurites/metabolism , Neurons/cytology , Neurons/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , SOXD Transcription Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 113(52): E8443-E8452, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27940916

ABSTRACT

Voltage-gated sodium channels are crucial determinants of neuronal excitability and signaling. Trafficking of the voltage-gated sodium channel NaV1.7 is dysregulated in neuropathic pain. We identify a trafficking program for NaV1.7 driven by hierarchical interactions with posttranslationally modified versions of the binding partner collapsin response mediator protein 2 (CRMP2). The binding described between CRMP2 and NaV1.7 was enhanced by conjugation of CRMP2 with small ubiquitin-like modifier (SUMO) and further controlled by the phosphorylation status of CRMP2. We determined that CRMP2 SUMOylation is enhanced by prior phosphorylation by cyclin-dependent kinase 5 and antagonized by Fyn phosphorylation. As a consequence of CRMP2 loss of SUMOylation and binding to NaV1.7, the channel displays decreased membrane localization and current density, and reduces neuronal excitability. Preventing CRMP2 SUMOylation with a SUMO-impaired CRMP2-K374A mutant triggered NaV1.7 internalization in a clathrin-dependent manner involving the E3 ubiquitin ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4) and endocytosis adaptor proteins Numb and epidermal growth factor receptor pathway substrate 15. Collectively, our work shows that diverse modifications of CRMP2 cross-talk to control NaV1.7 activity and illustrate a general principle for regulation of NaV1.7.


Subject(s)
Intercellular Signaling Peptides and Proteins/physiology , NAV1.7 Voltage-Gated Sodium Channel/physiology , Nerve Tissue Proteins/physiology , Protein Processing, Post-Translational , Animals , Cell Line , Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , HEK293 Cells , Humans , Male , Neurons/metabolism , Pain/genetics , Pain/metabolism , Patch-Clamp Techniques , Phosphorylation , Protein Transport , Rats , Rats, Sprague-Dawley
19.
J Neurosci ; 37(23): 5648-5658, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28483976

ABSTRACT

The voltage-gated K+ channel Kv2.1 has been intimately linked with neuronal apoptosis. After ischemic, oxidative, or inflammatory insults, Kv2.1 mediates a pronounced, delayed enhancement of K+ efflux, generating an optimal intracellular environment for caspase and nuclease activity, key components of programmed cell death. This apoptosis-enabling mechanism is initiated via Zn2+-dependent dual phosphorylation of Kv2.1, increasing the interaction between the channel's intracellular C-terminus domain and the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) protein syntaxin 1A. Subsequently, an upregulation of de novo channel insertion into the plasma membrane leads to the critical enhancement of K+ efflux in damaged neurons. Here, we investigated whether a strategy designed to interfere with the cell death-facilitating properties of Kv2.1, specifically its interaction with syntaxin 1A, could lead to neuroprotection following ischemic injury in vivo The minimal syntaxin 1A-binding sequence of Kv2.1 C terminus (C1aB) was first identified via a far-Western peptide screen and used to create a protherapeutic product by conjugating C1aB to a cell-penetrating domain. The resulting peptide (TAT-C1aB) suppressed enhanced whole-cell K+ currents produced by a mutated form of Kv2.1 mimicking apoptosis in a mammalian expression system, and protected cortical neurons from slow excitotoxic injury in vitro, without influencing NMDA-induced intracellular calcium responses. Importantly, intraperitoneal administration of TAT-C1aB in mice following transient middle cerebral artery occlusion significantly reduced ischemic stroke damage and improved neurological outcome. These results provide strong evidence that targeting the proapoptotic function of Kv2.1 is an effective and highly promising neuroprotective strategy.SIGNIFICANCE STATEMENT Kv2.1 is a critical regulator of apoptosis in central neurons. It has not been determined, however, whether the cell death-enabling function of this K+ channel can be selectively targeted to improve neuronal survival following injury in vivo The experiments presented here demonstrate that the cell death-specific role of Kv2.1 can be uniquely modulated to provide neuroprotection in an animal model of acute ischemic stroke. We thus reveal a novel therapeutic strategy for neurological disorders that are accompanied by Kv2.1-facilitated forms of cell death.


Subject(s)
Apoptosis/drug effects , Kv1.2 Potassium Channel/antagonists & inhibitors , Kv1.2 Potassium Channel/metabolism , Neuroprotective Agents/administration & dosage , Stroke/drug therapy , Stroke/physiopathology , Animals , Cells, Cultured , Drug Delivery Systems/methods , Female , Male , Potassium Channel Blockers/administration & dosage , Qa-SNARE Proteins/antagonists & inhibitors , Qa-SNARE Proteins/metabolism , Rats , Stroke/pathology , Treatment Outcome
20.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-37732182

ABSTRACT

Cell membranes consist of heterogeneous lipid domains that influence key cellular processes, including signal transduction, endocytosis, and electrical excitability. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. The size of OMDs is also dependent on cholesterol levels and the structure of lipid tails. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. This increased neuronal firing could be partially due to an increased open probability of HCN channels. In animal models of neuropathic pain, we observed shrunken OMDs and relocalization of HCN channels from OMDs to disordered lipid domains. The gating effect on HCN channels was likely a result of direct modulation of the voltage sensor by OMDs. These findings suggest that disturbances in lipid domains play a role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.

SELECTION OF CITATIONS
SEARCH DETAIL