Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
World J Surg Oncol ; 20(1): 84, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35287689

ABSTRACT

BACKGROUND: This study aims to investigate the effect of PSMC2 expression on the clinical prognosis of glioma patients and its molecular mechanism. METHODS: TCGA multi-tumor screening and survival analysis were combined to explore the differential expression of PSMC2 in multi-tumor. PSMC2 expression in glioma and normal tissues was detected by Western blot and RT-qPCR. Kaplan-Meier survival curve was used to visualize the effect of PSMC2 expression on the overall survival rate and disease-free survival rate of patients with glioma. The highly expressed cell line U343MG was selected to construct a PSMC2 knockdown model by siRNA transfection, and the effect of PSMC2 knockdown on cell proliferation ability was evaluated by CCK-8 assay. Gene-set enrichment analysis of PSMC2 co-expression genes was carried out to predict the molecular mechanism of their regulation of tumor cell phenotypes, and the analysis results were verified by flow cytometry and Western blot. RESULTS: Through broad-spectrum screening of 31 kinds of tumors, we found that PSMC2 was upregulated in most tumors, but PSMC2 was most significantly overexpressed in gliomas and correlated with poor prognosis in glioma patients. The results of Western blot and qRT-PCR showed that PSMC2 was significantly overexpressed in glioma tissues. Further survival analysis revealed that the overall survival and disease-free survival of patients with low PSMC2 expression were significantly better than that of patients with high PSMC2 expression. The proliferation of U343MG cells was significantly inhibited after PSMC2 knockdown. Enrichment analysis of PSMC2 co-expression genes indicated that PSMC2 affected the apoptosis process. The expression of apoptosis-related proteins also significantly changed following PSMC2 knockdown. CONCLUSIONS: PSMC2 promotes the proliferation of glioma cells and inhibits the apoptosis, which is expected to be a potential therapeutic target for glioma.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Glioma , Proteasome Endopeptidase Complex , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Glioma/pathology , Humans , Prognosis , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism
2.
J Cell Biochem ; 120(10): 16567-16574, 2019 10.
Article in English | MEDLINE | ID: mdl-31081163

ABSTRACT

Glioma is the most common type of primary intracranial tumor. Dysregulation of circular RNAs (circRNAs) plays a critical role in multiple solid tumors. However, the expression profiles of circRNAs and their functions in glioma have been rarely studied. The current work aims to investigate the clinical significance of a novel circRNA, circ-POSTN, in glioma and explore its biological functions and mechanisms in the progression of glioma. We found that circ-POSTN was highly expressed in glioma tissue samples and cells. High circ-POSTN expression was significantly linked to larger tumor size, higher World Health Organization grades, and shorter overall survival. Furthermore, silencing of circ-POSTN in glioma cells could decrease cell growth, migratory and invasive potential, and induce cell apoptosis in LN229 cells. On the contrary, ectopically expressed circ-POSTN induced the opposite effects in the U251 cell line. By bioinformatic prediction and luciferase reporter assay, we identified that miR-1205 could be sponged by circ-POSTN. Further rescue assays demonstrated that the oncogenic functions of circ-POSTN are partly attributed to its regulation of miR-1205 in glioma cells. Taken together, our data suggest that circ-POSTN plays an oncogenic role in glioma progression and may serve as a novel therapeutic target in this deadly disease.


Subject(s)
Glioma/metabolism , MicroRNAs/metabolism , RNA, Circular/metabolism , RNA, Neoplasm/metabolism , Adult , Cell Line, Tumor , Female , Glioma/genetics , Glioma/pathology , Humans , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , RNA, Circular/genetics , RNA, Neoplasm/genetics
3.
J Cell Biochem ; 120(10): 16495-16502, 2019 10.
Article in English | MEDLINE | ID: mdl-31069865

ABSTRACT

Glioma (GM) is one of the major global health problems across the world. Circular RNAs (circRNAs) have been increasingly identified and characterized in almost every aspect of biology, especially in cancer biology. This study desires to investigate the mechanism of circ-PITX1 on regulating GM development. Quantitative reverse-transcription polymerase chain reaction was carried out to measure the expression of circ-PITX1, which was upregulated in matched cancerous tissues and adjacent noncancerous tissues from 52 patients and four cell lines of GM. Fisher's exact indicated the upregulation of circ-PITX1 was associated with patients' tumor size and World Health Organization grade. Gain and loss-of-function assays demonstrated that circ-PITX1 could facilitate the growth, migration, and invasion and inhibit cell apoptosis in GM cell lines. What's more, circ-PITX1 sponges miR-518a-5p to release its repression on 3'-untranslated region (3'UTR) of interleukin 17 receptor D (IL17RD) messenger RNA to exert its oncogenic functions in GM cells proved by dual-luciferase reporter and rescue assays. Taken together, circ-PITX1 may play a critical role in GM and may be used as a therapeutic target for GM.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma/metabolism , MicroRNAs/metabolism , Neoplasm Proteins/biosynthesis , RNA, Circular/metabolism , RNA, Neoplasm/metabolism , Receptors, Interleukin/biosynthesis , Up-Regulation , 3' Untranslated Regions , Adult , Apoptosis , Cell Line, Tumor , Cell Movement , Female , Glioma/genetics , Glioma/pathology , Humans , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , Neoplasm Proteins/genetics , RNA, Circular/genetics , RNA, Neoplasm/genetics , Receptors, Interleukin/genetics
4.
Cell Biochem Biophys ; 82(3): 2597-2606, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39043960

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is a significant pathological process in stroke, characterized by neuronal cell death and neurological dysfunction. Metformin, commonly used for diabetes management, has been noted for its neuroprotective properties, though its effects on CIRI and the mechanisms involved remain unclear. This study explored the neuroprotective impact of metformin on CIRI, focusing on its potential to modulate the c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38) signaling pathways. Using in vitro models of oxygen-glucose deprivation/reperfusion (OGD/R) in neuronal cells and in vivo mouse models of middle cerebral artery occlusion (MCAO), the effects of metformin were assessed. Cell viability was measured with Cell Counting Kit-8 (CCK-8), protein expression via Western Blot (WB), and apoptosis through flow cytometry. The extent of brain injury in mice was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining, while JNK and p38 activation statuses were detected through WB and phospho-JNK (p-JNK) immunofluorescence staining. Results showed that metformin significantly improved the viability of HT22 cells post-OGD/R, reduced apoptosis, and decreased OGD/R-induced phosphorylation of JNK and p38 in vitro. In vivo, metformin treatment notably reduced brain infarct volume in MCAO mice, inhibited p-p38 and p-JNK expression, and enhanced neurological function. These findings suggest that metformin exerts neuroprotective effects against CIRI by modulating the JNK/p38 signaling pathway, highlighting its potential therapeutic value in treating cerebral ischemia-reperfusion injury and paving the way for clinical applications.


Subject(s)
Cell Survival , MAP Kinase Signaling System , Metformin , Neuroprotective Agents , Reperfusion Injury , p38 Mitogen-Activated Protein Kinases , Animals , Metformin/pharmacology , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , Male , MAP Kinase Signaling System/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Glucose/metabolism , Mice, Inbred C57BL , Cell Line , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Disease Models, Animal , Phosphorylation/drug effects , Neurons/drug effects , Neurons/metabolism
5.
Materials (Basel) ; 17(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274623

ABSTRACT

The aim is to reduce the elastic deformation of the web and side walls of low-stiffness thin-walled beams when the floating fixture method is used. This paper takes the number and position of fixture points as the optimization variables, establishes a calculation model of elastic deformation, and constructs the objective function of maximum total elastic deformation. An optimized solution utilizing the augmented multiplier method is employed, which forms the basis for the fixture layout optimization method to reduce the elastic deformation of low-stiffness thin-walled beams. A theoretical calculation, simulation analysis, and the fixture layout optimization of total maximum elastic deformation were completed using an aluminum alloy low-stiffness thin-walled beam as an example. The results show that based on the optimized layout, the average relative error between the calculated value and the simulated value of total maximum elastic deformation is 17.43%, and the simulated value of maximum elastic deformation is reduced by 48.49% after optimizing the fixture layout. The measured value is reduced by 0.02 mm on average, and deformation is reduced by 74.07%, which verifies the effectiveness of the floating fixture layout optimization control of machining elastic deformation proposed in this paper.

6.
Ann Transl Med ; 11(2): 101, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36819547

ABSTRACT

Background: Ischemic stroke is a brain dysfunction disease caused by vascular obstruction. The expression of many kinds of microRNAs (miRNAs) is related to ischemic stroke. MiRNA has the ability to reduce or save ischemic injury. Therefore, we aimed to explore the protective miRNA in the ischemia-reperfusion process. Methods: The Gene Expression Omnibus (GEO) peripheral RNA sequencing (RNA-seq) datasets of ischemic stroke patients were analyzed to search for differentially expressed miRNAs in the ischemia-reperfusion process. The expression level of miRNA in 60 patients with ischemic stroke and 23 age-matched healthy control inpatients was tested by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The significantly changed miRNAs were verified through comparison of the peripheral blood of healthy people and patients of the hospital. The in-vitro ischemia-reperfusion model was established through oxygen-glucose deprivation (OGD) treated HEMC-1 cells. The cell viabilities and cell apoptosis are detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively. Apoptosis-related proteins including Bcl-2, Bax, caspase-3, and caspase-9 expression levels were verified by western blot. Predict the combination of hsa-miR-21-5p and interleukin-6 receptor (IL-6R) through TargetScan database, clone the 2964-2961 site of IL-6R-3'-untranslated region (3'-UTR), establish IL-6R-3'-UTR and IL-6R-3'-UTR mutant plasmids, copy and clone wild type and mutant IL-6R-3'-UTR into luciferase report vector pGL3 respectively, and detect the activity of luciferase. The expression of hsa-miR-21-5p was regulated by using hsa-miR-21-5p mimic and hsa-miR-21-5p inhibitor. Results: Through RNA-seq analysis, it was revealed that "hsa-miR-548ar-3p", "hsa-miR-651-5p", "hsa-miR-142-3p", "hsa-miR-21-5p", and "hsa-miR-30e-5p" were notably lower in ischemia patients, and that "hsa-miR-21-5p" was significantly decreased in the peripheral blood of hospital patients. Luciferase assay showed that hsa-miR-21-5p could directly bind to the 3'-UTR of the IL-6R gene and inhibit IL-6R translation; the level of IL-6R was also elevated in patients. In the OGD-treated HMEC-1 cells, overexpressed hsa-miR-21-5p mimic could enhance cell viabilities and decrease cell apoptosis. Moreover, IL-6R overexpression could reduce the protective effects of hsa-miR-21-5p. Conclusions: In the peripheral blood of ischemia patients, hsa-miR-21-5p is significantly decreased and IL-6R is elevated. The "hsa-miR-21-5p" could bind to the IL-6R gene and suppress IL-6R expression, thus alleviating the damage of OGD treatment in HMEC-1 cells.

7.
Iran J Public Health ; 51(10): 2298-2307, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36415798

ABSTRACT

Background: We aimed to explore the ole and mechanism of lactate receptor (HCAR1) in the angiogenesis of leptomeningeal fibroblast-like cells. Methods: Human brain fibroblast-like cells were selected and some cells were deactivated, analyzed and compared with HCAR1 mRNA and protein expressions in deactivated/normal cells. HCAR1-/- mice and wild type (WT) mice were selected and divided into WT, WT exercise, HCAE1 KO and HCAE1 KO exercise groups, with 10 mice for each group. HCAR1mRNA and expression levels of proteins in fibroblast-like cells, mRNA and expression levels of proteins in Collagen IV, phosphatidylinositol trihydroxykinase (PI3K), serine threonine kinase (AKT) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) in hippocampus were compared, and the microvessel density (MVD) and diameter were calculated. Results: mRNA and expression levels of proteins in Collagen IV, PI3K, AKT, ERK1/2 and MVD in hippocampus were significantly higher in the WT exercise group than those in the WT group, microvessel diameter was significantly lower than that in the WT group (P<0.05). mRNA and expression levels of proteins in Collagen IV, PI3K, AKT, ERK1/2 and MVD in hippocampus in the HCAR1 KO and HCAR1 KO exercise groups were significantly lower than those in the WT group, microvessel diameter was higher than that in the WT group (P<0.05). Compared with the HCAR1 KO exercise group, the changes of mRNA in Collagen IV, PI3K, AKT, ERK1/2 and microvascular were not significant. Conclusion: Exercise can promote cerebral angiogenesis through the activation of the lactate receptor HCAR1 and the ERK1/2-PI3K/Akt signaling pathways.

8.
Materials (Basel) ; 15(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36013708

ABSTRACT

By adaptively releasing deformation during machining, floating clamping significantly raises the machining quality of aircraft structural parts. The fundamental issue to be resolved is how to precisely control the clamping action of the floating fixtures. In this study, the machining process of aircraft beams was studied, utilizing the finite element method (FEM) from the perspective of strain energy evolution. The study found that the increment of deformation and the variation of the strain energy between adjacent removed layers of the material showed the same trend of change, and targeted clamping loosening at the stage of an excessive strain energy evolution gradient is beneficial to reducing the final deformation of the workpiece. Therefore, a clamping action control method based on strain energy evolution gradient regulation is proposed, and a clamping action control strategy of floating fixtures was formulated. Furthermore, a cutting experiment was carried out, and the results showed that the maximum deformation of the aircraft beam using the clamping action control strategy was only 0.112 mm, which was reduced by 74.6% compared to traditional clamping.

9.
J Healthc Eng ; 2022: 4687349, 2022.
Article in English | MEDLINE | ID: mdl-35035839

ABSTRACT

Stroke is a disease with the highest incidence rate and the highest mortality rate in the world. The study aims to verify the neuroprotective effect of Butylphthalide. The mice were divided into sham group, MCAO group, and MCAO + Butylphthalide-treated group. The mice in MCAO + Butylphthalide-treated group were administered with 70 mg/kg Butylphthalide injection intraperitoneally after cerebral ischemia-reperfusion. The normal saline with the same volume was administered intraperitoneally for the mice in the MCAO group and sham group. The levels of miR-21 in brain tissue and cells were detected by qPCR. The OGD/R injury model of Neuro2A cells was used to simulate the hypoxic-ischemic environment of neurons in vitro. The proliferation rate of Neuro2A cells was detected with CCK-8. The production of ROS was detected with DCFH-DA. Compared with the mice in MCAO group, a decrease (P < 0.01) was observed in the functional neurologic impairment scoring, cerebral infarction volume, and brain loss volume in the mice treated with MCAO + Butylphthalide, but an increase (P < 0.01) was observed in the level of miR-21, which was positively correlated with functional neurologic impairment scoring (r = -0.8933, P < 0.001). MTT assay showed that the cell viability of OGD/R + Butylphthalide group was significantly higher than that of other groups (P < 0.001), and the activity of ROS was significantly decreased (P < 0.001). The WB results showed that, compared with OGD/R + miR-NC and control groups, the ratio of Bcl-2/Bax in OGD/R + Butylphthalide group and OGD/R + miR-21 mimics group was significantly higher (P < 0.05), while the ratio of caspase-3/GAPDH was significantly lower (P < 0.05). In conclusion, Butylphthalide has neuroprotective effect on the mouse model of MCAO. It may upregulate the level of miR-21 to inhibit neuronal apoptosis and ROS production and improve the proliferation activity. The specific mechanism may lie in inhibiting TLR4/NF-κB pathway.


Subject(s)
Brain Ischemia , MicroRNAs , Neuroprotective Agents , Reperfusion Injury , Animals , Apoptosis , Benzofurans , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Humans , Mice , MicroRNAs/metabolism , NF-kappa B/metabolism , NF-kappa B/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Toll-Like Receptor 4/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL