Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36555281

ABSTRACT

Deletions in the CCM1, CCM2, and CCM3 genes are a common cause of familial cerebral cavernous malformations (CCMs). In current molecular genetic laboratories, targeted next-generation sequencing or multiplex ligation-dependent probe amplification are mostly used to identify copy number variants (CNVs). However, both techniques are limited in their ability to specify the breakpoints of CNVs and identify complex structural variants (SVs). To overcome these constraints, we established a targeted Cas9-mediated nanopore sequencing approach for CNV detection with single nucleotide resolution. Using a MinION device, we achieved complete coverage for the CCM genes and determined the exact size of CNVs in positive controls. Long-read sequencing for a CCM1 and CCM2 CNV revealed that the adjacent ANKIB1 and NACAD genes were also partially or completely deleted. In addition, an interchromosomal insertion and an inversion in CCM2 were reliably re-identified by long-read sequencing. The refinement of CNV breakpoints by long-read sequencing enabled fast and inexpensive PCR-based variant confirmation, which is highly desirable to reduce costs in subsequent family analyses. In conclusion, Cas9-mediated nanopore sequencing is a cost-effective and flexible tool for molecular genetic diagnostics which can be easily adapted to various target regions.


Subject(s)
Carrier Proteins , DNA Copy Number Variations , Nanopore Sequencing , Humans , Carrier Proteins/genetics , CRISPR-Cas Systems , Multiplex Polymerase Chain Reaction
2.
FASEB J ; 34(7): 9018-9033, 2020 07.
Article in English | MEDLINE | ID: mdl-32515053

ABSTRACT

Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.


Subject(s)
Apoptosis Regulatory Proteins/antagonists & inhibitors , Carrier Proteins/antagonists & inhibitors , Endothelium, Vascular/cytology , Fibronectins/metabolism , KRIT1 Protein/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/genetics , CRISPR-Cas Systems , Carrier Proteins/genetics , Cells, Cultured , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Fibronectins/genetics , Humans , KRIT1 Protein/genetics , Membrane Proteins/genetics , Phenotype , Proto-Oncogene Proteins/genetics
3.
J Cell Mol Med ; 23(3): 1771-1783, 2019 03.
Article in English | MEDLINE | ID: mdl-30549232

ABSTRACT

CCM3, originally described as PDCD10, regulates blood-brain barrier integrity and vascular maturation in vivo. CCM3 loss-of-function variants predispose to cerebral cavernous malformations (CCM). Using CRISPR/Cas9 genome editing, we here present a model which mimics complete CCM3 inactivation in cavernous endothelial cells (ECs) of heterozygous mutation carriers. Notably, we established a viral- and plasmid-free crRNA:tracrRNA:Cas9 ribonucleoprotein approach to introduce homozygous or compound heterozygous loss-of-function CCM3 variants into human ECs and studied the molecular and functional effects of long-term CCM3 inactivation. Induction of apoptosis, sprouting, migration, network and spheroid formation were significantly impaired upon prolonged CCM3 deficiency. Real-time deformability cytometry demonstrated that loss of CCM3 induces profound changes in cell morphology and mechanics: CCM3-deficient ECs have an increased cell area and elastic modulus. Small RNA profiling disclosed that CCM3 modulates the expression of miRNAs that are associated with endothelial ageing. In conclusion, the use of CRISPR/Cas9 genome editing provides new insight into the consequences of long-term CCM3 inactivation in human ECs and supports the hypothesis that clonal expansion of CCM3-deficient dysfunctional ECs contributes to CCM formation.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Clonal Evolution , Endothelium, Vascular/pathology , Membrane Proteins/metabolism , Mutation , Neovascularization, Pathologic/etiology , Proto-Oncogene Proteins/metabolism , Alleles , Apoptosis , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/genetics , CRISPR-Cas Systems , Endothelium, Vascular/metabolism , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Human Umbilical Vein Endothelial Cells , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , MicroRNAs/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics
4.
Med Genet ; 33(3): 251-259, 2021 Sep.
Article in English | MEDLINE | ID: mdl-38835694

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular lesions that can cause severe neurological complications due to intracranial hemorrhage. Although the CCM disease genes, CCM1, CCM2, and CCM3, have been known for more than 15 years now, our understanding of CCM pathogenesis is still incomplete. CCM research currently focuses on three main disease mechanisms: (1) clonal expansion of endothelial cells with biallelic inactivation of CCM1, CCM2, or CCM3, (2) recruitment of cells with preserved CCM protein expression into the growing lesion, and (3) disruption of endothelial cell-cell junctions in CCMs. We here describe novel CRISPR/Cas9-based in vitro models of CCM and discuss their strengths and limitations in the context of high-throughput drug screening and repurposing approaches.

5.
Front Mol Biosci ; 8: 622547, 2021.
Article in English | MEDLINE | ID: mdl-34307446

ABSTRACT

Cerebral cavernous malformations are slow-flow thrombi-containing vessels induced by two-step inactivation of the CCM1, CCM2 or CCM3 gene within endothelial cells. They predispose to intracerebral bleedings and focal neurological deficits. Our understanding of the cellular and molecular mechanisms that trigger endothelial dysfunction in cavernous malformations is still incomplete. To model both, hereditary and sporadic CCM disease, blood outgrowth endothelial cells (BOECs) with a heterozygous CCM1 germline mutation and immortalized wild-type human umbilical vein endothelial cells were subjected to CRISPR/Cas9-mediated CCM1 gene disruption. CCM1 -/- BOECs demonstrated alterations in cell morphology, actin cytoskeleton dynamics, tube formation, and expression of the transcription factors KLF2 and KLF4. Furthermore, high VWF immunoreactivity was observed in CCM1 -/- BOECs, in immortalized umbilical vein endothelial cells upon CRISPR/Cas9-induced inactivation of either CCM1, CCM2 or CCM3 as well as in CCM tissue samples of familial cases. Observer-independent high-content imaging revealed a striking reduction of perinuclear Weibel-Palade bodies in unstimulated CCM1 -/- BOECs which was observed in CCM1 +/- BOECs only after stimulation with PMA or histamine. Our results demonstrate that CRISPR/Cas9 genome editing is a powerful tool to model different aspects of CCM disease in vitro and that CCM1 inactivation induces high-level expression of VWF and redistribution of Weibel-Palade bodies within endothelial cells.

6.
Methods Mol Biol ; 2152: 169-177, 2020.
Article in English | MEDLINE | ID: mdl-32524552

ABSTRACT

The CRISPR/Cas9 system is a versatile tool that enables targeted genome editing in various cell types, including hard-to-transfect endothelial cells. The required crRNA, tracrRNA, and Cas9 protein have mostly been introduced into endothelial cells by viral transduction or plasmid transfection so far. We here describe an effective lipofection-based delivery of pre-complexed crRNA:tracrRNA:Cas9 ribonucleoproteins into human umbilical vein endothelial cells (HUVEC) and immortalized HUVEC (CI-huVEC). Complete inactivation of either CCM1, CCM2, or CCM3 in endothelial cells mimics the situation in cavernous lesions of CCM patients and thus represents a suitable model for future studies.


Subject(s)
CRISPR-Cas Systems , Endothelial Cells/metabolism , Gene Editing , Gene Knockout Techniques , Hemangioma, Cavernous, Central Nervous System/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Hemangioma, Cavernous, Central Nervous System/diagnosis , Hemangioma, Cavernous, Central Nervous System/metabolism , Human Umbilical Vein Endothelial Cells , Humans
7.
Mol Genet Genomic Med ; 7(7): e00755, 2019 07.
Article in English | MEDLINE | ID: mdl-31124307

ABSTRACT

BACKGROUND: The CRISPR/Cas9 system has opened new perspectives to study the molecular basis of cerebral cavernous malformations (CCMs) in personalized disease models. However, precise genome editing in endothelial and other hard-to-transfect cells remains challenging. METHODS: In a proof-of-principle study, we first isolated blood outgrowth endothelial cells (BOECs) from a CCM1 mutation carrier with multiple CCMs. In a CRISPR/Cas9 gene correction approach, a high-fidelity Cas9 variant was then transfected into patient-derived BOECs using a ribonucleoprotein complex and a single-strand DNA oligonucleotide. In addition, patient-specific CCM1 knockout clones were expanded after CRISPR/Cas9 gene inactivation. RESULTS: Deep sequencing demonstrated correction of the mutant allele in nearly 33% of all cells whereas no CRISPR/Cas9-induced mutations in predicted off-target loci were identified. Corrected BOECs could be cultured in cell mixtures but demonstrated impaired clonal survival. In contrast, CCM1-deficient BOECs displayed increased resistance to stress-induced apoptotic cell death and could be clonally expanded to high passages. When cultured together, CCM1-deficient BOECs largely replaced corrected as well as heterozygous BOECs. CONCLUSION: We here demonstrate that a non-viral CRISPR/Cas9 approach can not only be used for gene knockout but also for precise gene correction in hard-to-transfect endothelial cells (ECs). Comparing patient-derived isogenic CCM1+/+ , CCM1+/- , and CCM1-/- ECs, we show that the inactivation of the second allele results in clonal evolution of ECs lacking CCM1 which likely reflects the initiation phase of CCM genesis.


Subject(s)
Endothelial Cells/metabolism , Gene Editing/methods , Hemangioma, Cavernous, Central Nervous System/genetics , KRIT1 Protein/genetics , Adult , CRISPR-Cas Systems , Cells, Cultured , Genetic Therapy/methods , Hemangioma, Cavernous, Central Nervous System/therapy , Humans , KRIT1 Protein/metabolism , Proof of Concept Study
8.
Front Neurol ; 10: 1219, 2019.
Article in English | MEDLINE | ID: mdl-31824402

ABSTRACT

Autosomal dominant cerebral cavernous malformation (CCM) represents a genetic disorder with a high mutation detection rate given that stringent inclusion criteria are used and copy number variation analyses are part of the diagnostic workflow. Pathogenic variants in either CCM1 (KRIT1), CCM2 or CCM3 (PDCD10) can be identified in 87-98% of CCM families with at least two affected individuals. However, the interpretation of novel sequence variants in the 5'-region of CCM2 remains challenging as there are various alternatively spliced transcripts and different transcription start sites. Comprehensive genetic and clinical data of CCM2 patients with variants in cassette exons that are either skipped or included into alternative CCM2 transcripts in the splicing process can significantly facilitate clinical variant interpretation. We here report novel pathogenic CCM2 variants in exon 3 and the adjacent donor splice site, describe the natural history of CCM disease in mutation carriers and provide further evidence for the classification of the amino acids encoded by the nucleotides of this cassette exon as a critical region within CCM2. Finally, we illustrate the advantage of a combined single nucleotide and copy number variation detection approach in NGS-based CCM1/CCM2/CCM3 gene panel analyses which can significantly reduce diagnostic turnaround time.

SELECTION OF CITATIONS
SEARCH DETAIL