Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L728-L741, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32877223

ABSTRACT

Airway epithelial homeostasis is under constant threat due to continuous exposure to the external environment, and abnormally robust sensitivity to external stimuli is critical to the development of airway diseases, including asthma. Ku is a key nonhomologous end-joining DNA repair protein with diverse cellular functions such as VDJ recombination and telomere length maintenance. Here, we show a novel function of Ku in alleviating features of allergic airway inflammation via the regulation of mitochondrial and endoplasmic reticulum (ER) stress. We first determined that airway epithelial cells derived from both asthmatic lungs and murine asthma models demonstrate increased expression of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ku protein expression was dramatically reduced in the bronchial epithelium of patients with asthma as well as in human bronchial epithelial cells exposed to oxidative stress. Knockdown of Ku70 or Ku80 in naïve mice elicited mitochondrial collapse or ER stress, leading to bronchial epithelial cell apoptosis and spontaneous development of asthma-like features, including airway hyperresponsiveness, airway inflammation, and subepithelial fibrosis. These findings demonstrate an essential noncanonical role for Ku proteins in asthma pathogenesis, likely via maintenance of organelle homeostasis. This novel function of Ku proteins may also be important in other disease processes associated with organelle stress.


Subject(s)
Epithelial Cells/metabolism , Homeostasis/physiology , Inflammation/prevention & control , Ku Autoantigen/metabolism , Animals , Asthma/pathology , Asthma/prevention & control , Endoplasmic Reticulum Stress/physiology , Epithelial Cells/pathology , Humans , Inflammation/metabolism , Lung/metabolism , Lung/pathology , Mice , Oxidative Stress/physiology , Respiratory Hypersensitivity/pathology
2.
EMBO J ; 33(9): 994-1010, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24431222

ABSTRACT

There is emerging evidence that stem cells can rejuvenate damaged cells by mitochondrial transfer. Earlier studies show that epithelial mitochondrial dysfunction is critical in asthma pathogenesis. Here we show for the first time that Miro1, a mitochondrial Rho-GTPase, regulates intercellular mitochondrial movement from mesenchymal stem cells (MSC) to epithelial cells (EC). We demonstrate that overexpression of Miro1 in MSC (MSCmiro(Hi)) leads to enhanced mitochondrial transfer and rescue of epithelial injury, while Miro1 knockdown (MSCmiro(Lo)) leads to loss of efficacy. Treatment with MSCmiro(Hi) was associated with greater therapeutic efficacy, when compared to control MSC, in mouse models of rotenone (Rot) induced airway injury and allergic airway inflammation (AAI). Notably, airway hyperresponsiveness and remodeling were reversed by MSCmiro(Hi) in three separate allergen-induced asthma models. In a human in vitro system, MSCmiro(Hi) reversed mitochondrial dysfunction in bronchial epithelial cells treated with pro-inflammatory supernatant of IL-13-induced macrophages. Anti-inflammatory MSC products like NO, TGF-ß, IL-10 and PGE2, were unchanged by Miro1 overexpression, excluding non-specific paracrine effects. In summary, Miro1 overexpression leads to increased stem cell repair.


Subject(s)
Lung Injury/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Mitochondria/metabolism , rho GTP-Binding Proteins/physiology , Animals , Biological Transport/genetics , Cells, Cultured , Genetic Therapy/methods , Humans , Lung/pathology , Lung Injury/pathology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Mitochondria/transplantation , NIH 3T3 Cells , Nanotubes , Treatment Outcome , rho GTP-Binding Proteins/genetics
3.
Nat Commun ; 11(1): 1545, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210226

ABSTRACT

Aging is characterized by a gradual loss of function occurring at the molecular, cellular, tissue and organismal levels. At the chromatin level, aging associates with progressive accumulation of epigenetic errors that eventually lead to aberrant gene regulation, stem cell exhaustion, senescence, and deregulated cell/tissue homeostasis. Nuclear reprogramming to pluripotency can revert both the age and the identity of any cell to that of an embryonic cell. Recent evidence shows that transient reprogramming can ameliorate age-associated hallmarks and extend lifespan in progeroid mice. However, it is unknown how this form of rejuvenation would apply to naturally aged human cells. Here we show that transient expression of nuclear reprogramming factors, mediated by expression of mRNAs, promotes a rapid and broad amelioration of cellular aging, including resetting of epigenetic clock, reduction of the inflammatory profile in chondrocytes, and restoration of youthful regenerative response to aged, human muscle stem cells, in each case without abolishing cellular identity.


Subject(s)
Cell Nucleus/metabolism , Cellular Reprogramming/physiology , Cellular Senescence/physiology , RNA, Messenger/metabolism , Rejuvenation/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Aging/physiology , Animals , Cells, Cultured , Chondrocytes , DNA Methylation/physiology , Endothelial Cells , Epigenesis, Genetic/physiology , Female , Fibroblasts , Gene Expression Profiling , Humans , Intravital Microscopy , Male , Mice , Middle Aged , Muscle Cells , Primary Cell Culture , Stem Cells , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL