Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell ; 158(6): 1431-1443, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25215497

ABSTRACT

Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.


Subject(s)
Arabidopsis/genetics , Nucleotide Motifs , Sequence Analysis, DNA , Transcription Factors/metabolism , Arabidopsis/metabolism , Chromatin Immunoprecipitation , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Protein Binding , Quantitative Trait Loci
2.
Mol Biol Rep ; 48(2): 1819-1836, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33559819

ABSTRACT

For over a decade, diabetic neuropathy has exhibited great emergence in diabetic patients. Though there are numerous impediments in understanding the underlying pathology it is not that enough to conclude. Initially, there was no intricate protocol for diagnosis as its symptoms mimic most of the neurodegenerative disorders and demyelinating diseases. Continuous research on this, reveals many pathological correlates which are also detectable clinically. The most important pathologic manifestation is imbalanced angiogenesis/neo-vascularization. This review is completely focused on established pathogenesis and anti-angiogenic agents which are physiological signal molecules by the origin. Those agents can also be used externally to inhibit those pathogenic pathways. Pathologically DN demonstrates the misbalanced expression of many knotty factors like VEGF, FGF2, TGFb, NF-kb, TNF-a, MMP, TIMP, and many minor factors. Their pathway towards the incidence of DN is quite interrelated. Many anti-angiogenic agents inhibit neovascularization to many extents, but out of them predominantly inhibition of angiogenic activity is shared by endostatin which is now in clinical trial phase II. It inhibits almost all angiogenic factors and it is possible because they share interrelated pathogenesis towards imbalanced angiogenesis. Endostatin is a physiological signal molecule produced by the proteolytic cleavage of collagen XVIII. It has also a broad research profile in the field of medical research and further investigation can show promising therapeutic effects for benefit of mankind.


Subject(s)
Collagen Type XVIII/metabolism , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Endostatins/pharmacology , Metabolic Networks and Pathways/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Angiogenesis Inhibitors , Collagen Type XVIII/pharmacology , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetic Neuropathies/complications , Diabetic Neuropathies/genetics , Endostatins/physiology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Metabolic Networks and Pathways/genetics , Neovascularization, Physiologic/genetics
3.
Materials (Basel) ; 17(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612082

ABSTRACT

Shielding gas, metal vapors, and gases trapped inside powders during atomization can result in gas porosity, which is known to degrade the fatigue strength and tensile properties of components made by laser powder bed fusion additive manufacturing. Post-processing and trial-and-error adjustment of processing conditions to reduce porosity are time-consuming and expensive. Here, we combined mechanistic modeling and experimental data analysis and proposed an easy-to-use, verifiable, dimensionless gas porosity index to mitigate pore formation. The results from the mechanistic model were rigorously tested against independent experimental data. It was found that the index can accurately predict the occurrence of porosity for commonly used alloys, including stainless steel 316, Ti-6Al-4V, Inconel 718, and AlSi10Mg, with an accuracy of 92%. In addition, experimental data showed that the amount of pores increased at a higher value of the index. Among the four alloys, AlSi10Mg was found to be the most susceptible to gas porosity, for which the value of the gas porosity index can be 5 to 10 times higher than those for the other alloys. Based on the results, a gas porosity map was constructed that can be used in practice for selecting appropriate sets of process variables to mitigate gas porosity without the need for empirical testing.

4.
Curr Pharm Des ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38934286

ABSTRACT

Growth Differentiation Factor 15 (GDF15) has emerged as a pivotal signaling molecule implicated in diverse physiological processes, spanning metabolic regulation, inflammation, and cardiovascular health. This studyprovides a comprehensive exploration of GDF15's multifaceted role, primarily focusing on its association with obesity-related complications and therapeutic potential. GDF15's involvement in energy homeostasis, specifically its regulation of body weight and appetite through hindbrain neuron activation and the GFRAL-RET signaling pathway, underscores its significance as an appetite-regulating hormone. GDF15's intricate modulation within adipose tissue dynamics in response to dietary changes and obesity, coupled with its influence on insulin sensitivity, highlights its critical role in metabolic health. The manuscript delves into the intricate crosstalk between GDF15 and pathways related to insulin sensitivity, macrophage polarization, and adipose tissue function, elucidating its potential as a therapeutic target for metabolic disorders associated with obesity. GDF15's association with chronic low-grade inflammation and its impact on cardiovascular health, particularly during hyperlipidemia and ischemic events, are explored. The intricate relationship between GDF15 and cardiovascular diseases, including its effects on endothelial function, cardiac hypertrophy, and heart failure, emphasizes its multifaceted nature in maintaining overall cardiovascular well-being. Challenges regarding the therapeutic application of GDF15, such as long-term safety concerns and ongoing clinical investigations, are discussed. Lastly, future research directions exploring GDF15's potential in addressing obesity-related complications and cardiovascular risks are proposed, highlighting its promising role as a therapeutic target in reshaping treatment strategies for obesity and associated health conditions.

5.
Infect Med (Beijing) ; 3(2): 100112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948388

ABSTRACT

In a retrospective view, this review examines the impact of mucormycosis on health workers and researchers during the COVID era. The diagnostic and treatment challenges arising from unestablished underlying pathology and limited case studies add strain to healthcare systems. Mucormycosis, caused by environmental molds, poses a significant threat to COVID-19 patients, particularly those with comorbidities and compromised immune systems. Due to a variety of infectious Mucorales causes and regionally related risk factors, the disease's incidence is rising globally. Data on mucormycosis remains scarce in many countries, highlighting the urgent need for more extensive research on its epidemiology and prevalence. This review explores the associations between COVID-19 disease and mucormycosis pathology, shedding light on potential future diagnostic techniques based on the fungal agent's biochemical components. Medications used in ICUs and for life support in ventilated patients have been reported, revealing the challenge of managing this dual onslaught. To develop more effective treatment strategies, it is crucial to identify novel pharmacological targets through "pragmatic" multicenter trials and registries. In the absence of positive mycology culture data, early clinical detection, prompt treatment, and tissue biopsy are essential to confirm the specific morphologic features of the fungal agent. This review delves into the history, pathogens, and pathogenesis of mucormycosis, its opportunistic nature in COVID or immunocompromised individuals, and the latest advancements in therapeutics. Additionally, it offers a forward-looking perspective on potential pharmacological targets for future drug development.

6.
Article in English | MEDLINE | ID: mdl-38638042

ABSTRACT

This detailed review disclosed the NF-κB pro-inflammatory gen's activity regulation and explored the therapeutic significance, activation, and inhibition. This study uncovers the structural intricacies of the NF-κB proteins and highlights the key role of SIRT1 in NF-kB signaling pathway regulation. Particularly the Rel Homology Domain (RHD), elucidating interactions and the regulatory mechanisms involving inhibitory proteins like IκB and p100 within the NF-κB signaling cascade. Disruption of the pathway is important in uncontrolled inflammation and immune disorders. This study extensively describes the role connections of canonical and non-canonical signaling pathways of NF-κB with inflammatory and cellular responses. SIRT1 belongs to the class III histone deacetylase, via RelA/p65 deacetylation, it regulates the activity of NF-κB, closely linked with the NAD+/NADH cellular ratio, influencing stress responses, aging processes, gene regulation, and metabolic pathways. This detailed study reveals SIRT1 as a crucial avenue for uncovering the role of imbalanced NF-κB in diabetes, obesity, and atherosclerosis. This study provides valuable knowledge about the therapeutic targets of inflammatory disorders.

7.
J Appl Crystallogr ; 56(Pt 4): 1131-1143, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37555220

ABSTRACT

Laser melting, such as that encountered during additive manufacturing, produces extreme gradients of temperature in both space and time, which in turn influence microstructural development in the material. Qualification and model validation of the process itself and the resulting material necessitate the ability to characterize these temperature fields. However, well established means to directly probe the material temperature below the surface of an alloy while it is being processed are limited. To address this gap in characterization capabilities, a novel means is presented to extract subsurface temperature-distribution metrics, with uncertainty, from in situ synchrotron X-ray diffraction measurements to provide quantitative temperature evolution data during laser melting. Temperature-distribution metrics are determined using Gaussian process regression supervised machine-learning surrogate models trained with a combination of mechanistic modeling (heat transfer and fluid flow) and X-ray diffraction simulation. The trained surrogate model uncertainties are found to range from 5 to 15% depending on the metric and current temperature. The surrogate models are then applied to experimental data to extract temperature metrics from an Inconel 625 nickel superalloy wall specimen during laser melting. The maximum temperatures of the solid phase in the diffraction volume through melting and cooling are found to reach the solidus temperature as expected, with the mean and minimum temperatures found to be several hundred degrees less. The extracted temperature metrics near melting are determined to be more accurate because of the lower relative levels of mechanical elastic strains. However, uncertainties for temperature metrics during cooling are increased due to the effects of thermomechanical stress.

8.
Environ Sci Pollut Res Int ; 29(38): 57040-57053, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35731430

ABSTRACT

Obesity is a term that has recently been referred to describe a condition in which a person has become a diseased vessel. Obesity's internal pathology is too mysterious as it has a close resemblance with fatal diseases pathology. Obesity and coronavirus disease 2019 (COVID-19) are simultaneous epidemics declared by many organizations after observing their rampage in the recent world. Oxidative stress, cytokine storm, interleukin, and their contribution to the internal adipocyte environment implicated in the cascades of inflammatory pathology are portrayed here. Major determinants like angiotensin-converting enzyme 2 (ACE2) and renin-angiotensin-aldosterone system (RAAS) axis are highly sensitive molecular factors. Data from various countries suggested a clinical overview of how greater body mass index (BMI) is related to greater COVID-19 risk. It also gives insight into how obese individuals are obligately getting admitted and combating COVID-19 in intensive care unit including children less than 13 years of age under ultimate therapeutic options. There are numerous studies currently taking place for finding a cure for obesity which are mainly focused on natural resources and novel therapies like photobiomodulation (PBM) consisting of laser treatment, infrared treatment, etc. as current pharmacological treatments are reported to have fatal adverse effects. Finally, it is discussed how attenuating obesity will be a solution for future combat strategy. This review gives light on the areas of coagulation, inflammatory parameters, cardiometabolic complications, endothelial dysfunctions, immunological infirmity due to COVID-19 in obese individuals. A conceptual outline about correlation between the inflammatory pathophysiological steps triggering the aggravation of fatal consequences has been drawn in this review.


Subject(s)
COVID-19 , Child , Humans , Obesity , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/pharmacology , Renin-Angiotensin System/physiology , SARS-CoV-2
9.
Environ Sci Pollut Res Int ; 29(6): 8109-8125, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34846667

ABSTRACT

Vasoactive intestinal peptide (VIP) is a neuropeptide that is produced by the lymphoid cells and plays a major role in immunological functions for controlling the homeostasis of the immune system. VIP has been identified as a potent anti-inflammatory factor, in boosting both innate and adaptive immunity. Since December 2019, SARS-Cov-2 was found responsible for the disease COVID-19 which has spread worldwide. No specific therapies or 100% effective vaccines are yet available for the treatment of COVID-19. Drug repositioning may offer a strategy and several drugs have been repurposed, including lopinavir/ritonavir, remdesivir, favipiravir, and tocilizumab. This paper describes the main pharmacological properties of synthetic VIP drug (Aviptadil) which is now under clinical trials. A patented formulation of vasoactive intestinal polypeptide (VIP), named RLF-100 (Aviptadil), was developed and finally got approved for human trials by FDA in 2001 and in European medicines agency in 2005. It was awarded Orphan Drug Designation in 2001 by the US FDA for the treatment of acute respiratory distress syndrome and for the treatment of pulmonary arterial hypertension in 2005. Investigational new drug (IND) licenses for human trials of Aviptadil was guaranteed by both the US FDA and EMEA. Preliminary clinical trials seem to support Aviptadil's benefit. However, such drugs like Aviptadil in COVID-19 patients have peculiar safety profiles. Thus, adequate clinical trials are necessary for these compounds.


Subject(s)
COVID-19 , Vasoactive Intestinal Peptide , Drug Combinations , Humans , Phentolamine , SARS-CoV-2
10.
Materials (Basel) ; 14(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771785

ABSTRACT

Additive manufacturing, commonly known as three-dimensional printing (3D printing), is becoming an increasingly popular method for making components that are difficult to fabricate using traditional manufacturing processes [...].

SELECTION OF CITATIONS
SEARCH DETAIL