Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Genomics ; 25(1): 208, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408933

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a complex multifactorial disorder with a substantial genetic component. However, the clinical manifestations of PCOS are heterogeneous with notable differences between lean and obese women, implying a different pathophysiology manifesting in differential body mass index (BMI). We performed a meta-analysis of genome-wide association study (GWAS) data from six well-characterised cohorts, using a case-control study design stratified by BMI, aiming to identify genetic variants associated with lean and overweight/obese PCOS subtypes. RESULTS: The study comprised 254,588 women (5,937 cases and 248,651 controls) from individual studies performed in Australia, Estonia, Finland, the Netherlands and United States of America, and separated according to three BMI stratifications (lean, overweight and obese). Genome-wide association analyses were performed for each stratification within each cohort, with the data for each BMI group meta-analysed using METAL software. Almost half of the total study population (47%, n = 119,584) were of lean BMI (≤ 25 kg/m2). Two genome-wide significant loci were identified for lean PCOS, led by rs12000707 within DENND1A (P = 1.55 × 10-12) and rs2228260 within XBP1 (P = 3.68 × 10-8). One additional locus, LINC02905, was highlighted as significantly associated with lean PCOS through gene-based analyses (P = 1.76 × 10-6). There were no significant loci observed for the overweight or obese sub-strata when analysed separately, however, when these strata were combined, an association signal led by rs569675099 within DENND1A reached genome-wide significance (P = 3.22 × 10-9) and a gene-based association was identified with ERBB4 (P = 1.59 × 10-6). Nineteen of 28 signals identified in previous GWAS, were replicated with consistent allelic effect in the lean stratum. There were less replicated signals in the overweight and obese groups, and only 4 SNPs were replicated in each of the three BMI strata. CONCLUSIONS: Genetic variation at the XBP1, LINC02905 and ERBB4 loci were associated with PCOS within unique BMI strata, while DENND1A demonstrated associations across multiple strata, providing evidence of both distinct and shared genetic features between lean and overweight/obese PCOS-affected women. This study demonstrated that PCOS-affected women with contrasting body weight are not only phenotypically distinct but also show variation in genetic architecture; lean PCOS women typically display elevated gonadotrophin ratios, lower insulin resistance, higher androgen levels, including adrenal androgens, and more favourable lipid profiles. Overall, these findings add to the growing body of evidence supporting a genetic basis for PCOS as well as differences in genetic patterns relevant to PCOS BMI-subtype.


Subject(s)
Genome-Wide Association Study , Polycystic Ovary Syndrome , Female , Humans , Body Mass Index , Overweight/genetics , Case-Control Studies , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/complications , Obesity/genetics
2.
Curr Osteoporos Rep ; 21(5): 493-502, 2023 10.
Article in English | MEDLINE | ID: mdl-37410317

ABSTRACT

PURPOSE OF REVIEW: Recent advancements in "omics" technologies and bioinformatics have afforded researchers new tools to study bone biology in an unbiased and holistic way. The purpose of this review is to highlight recent studies integrating multi-omics data gathered from multiple molecular layers (i.e.; trans-omics) to reveal new molecular mechanisms that regulate bone biology and underpin skeletal diseases. RECENT FINDINGS: Bone biologists have traditionally relied on single-omics technologies (genomics, transcriptomics, proteomics, and metabolomics) to profile measureable differences (both qualitative and quantitative) of individual molecular layers for biological discovery and to investigate mechanisms of disease. Recently, literature has grown on the implementation of integrative multi-omics to study bone biology, which combines computational and informatics support to connect multiple layers of data derived from individual "omic" platforms. This emerging discipline termed "trans-omics" has enabled bone biologists to identify and construct detailed molecular networks, unveiling new pathways and unexpected interactions that have advanced our mechanistic understanding of bone biology and disease. While the era of trans-omics is poised to revolutionize our capacity to answer more complex and diverse questions pertinent to bone pathobiology, it also brings new challenges that are inherent when trying to connect "Big Data" sets. A concerted effort between bone biologists and interdisciplinary scientists will undoubtedly be needed to extract physiologically and clinically meaningful data from bone trans-omics in order to advance its implementation in the field.


Subject(s)
Computational Biology , Genomics , Humans , Proteomics , Metabolomics , Gene Expression Profiling
3.
J Cell Physiol ; 237(3): 1711-1719, 2022 03.
Article in English | MEDLINE | ID: mdl-34893976

ABSTRACT

Siglec-15, a Siglec family member and type-1 transmembrane protein, is expressed mainly in human macrophages and dendritic cells. It is comprised of a lysine-containing transmembrane domain, two extracellular immunoglobulin (Ig)-like domains and a short cytoplasmic domain. Siglec-15 is highly conserved in vertebrates and acts as an immunoreceptor. It exerts diverse functions on osteoclast physiology as well as the tumor microenvironment. Siglec-15 interacts with adapter protein DAP12 - Syk signaling pathway to regulate the RANKL/RANK-mediated PI3K, AKT, and ERK signaling pathways during osteoclast formation in vitro. Consistently, the lack of the Siglec-15 gene in mice leads to impaired osteoclast activity and osteopetrosis in vivo. In addition, Siglec-15 is expressed by tumor-associated macrophages (TAMs) and regulates the tumor microenvironment by activating the SYK/MAPK signaling pathway. Interestingly, Siglec-15 shares sequence homology to programmed death-ligand 1 (PD-L1) and has a potential immune-regulatory role in cancer immunology. Thus, Siglec-15 might also represent an alternative target for the treatment of cancers that do not respond to anti-PD-L1/PD-1 immunotherapy. Understanding the role of Siglec-15 in osteoclastogenesis and the tumor microenvironment will help us to develop new treatments for bone disorders and cancer.


Subject(s)
Immunoglobulins , Neoplasms , Animals , Biology , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Mice , Molecular Structure , Neoplasms/metabolism , Osteoclasts/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Tumor Microenvironment/genetics
5.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29304378

ABSTRACT

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Subject(s)
Bone Density/genetics , Genome-Wide Association Study , Adolescent , Age Factors , Animals , Child , Child, Preschool , Genetic Loci , Humans , Infant , Infant, Newborn , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Regression Analysis
6.
PLoS Genet ; 14(12): e1007813, 2018 12.
Article in English | MEDLINE | ID: mdl-30566500

ABSTRACT

Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis. PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown. Previous studies in Chinese and European subjects have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of European ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci. Only one locus differed significantly in its association by diagnostic criteria; otherwise the genetic architecture was similar between PCOS diagnosed by self-report and PCOS diagnosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified variants were associated with hyperandrogenism, gonadotropin regulation and testosterone levels in affected women. Linkage disequilibrium score regression analysis revealed genetic correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery disease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian randomization analyses suggested variants associated with body mass index, fasting insulin, menopause timing, depression and male-pattern balding play a causal role in PCOS. The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architecture for all diagnostic criteria. The data also provide the first genetic evidence for a male phenotype for PCOS and a causal link to depression, a previously hypothesized comorbid disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses multiple diagnostic criteria, gender, reproductive potential and mental health.


Subject(s)
Polycystic Ovary Syndrome/diagnosis , Polycystic Ovary Syndrome/genetics , Asian People/genetics , Case-Control Studies , Cohort Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Phenotype , White People/genetics
7.
Hum Mol Genet ; 26(14): 2791-2802, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28472463

ABSTRACT

Osteoporosis is a common and debilitating bone disease that is characterised by low bone mineral density, typically assessed using dual-energy X-ray absorptiometry. Quantitative ultrasound (QUS), commonly utilising the two parameters velocity of sound (VOS) and broadband ultrasound attenuation (BUA), is an alternative technology used to assess bone properties at peripheral skeletal sites. The genetic influence on the bone qualities assessed by QUS remains an under-studied area. We performed a comprehensive genome-wide association study (GWAS) including low-frequency variants (minor allele frequency ≥0.005) for BUA and VOS using a discovery population of individuals with whole-genome sequence (WGS) data from the UK10K project (n = 1268). These results were then meta-analysed with those from two deeply imputed GWAS replication cohorts (n = 1610 and 13 749). In the gender-combined analysis, we identified eight loci associated with BUA and five with VOS at the genome-wide significance level, including three novel loci for BUA at 8p23.1 (PPP1R3B), 11q23.1 (LOC387810) and 22q11.21 (SEPT5) (P = 2.4 × 10-8 to 1.6 × 10-9). Gene-based association testing in the gender-combined dataset revealed eight loci associated with BUA and seven with VOS after correction for multiple testing, with one novel locus for BUA at FAM167A (8p23.1) (P = 1.4 × 10-6). An additional novel locus for BUA was seen in the male-specific analysis at DEFB103B (8p23.1) (P = 1.8 × 10-6). Fracture analysis revealed significant associations between variation at the WNT16 and RSPO3 loci and fracture risk (P = 0.004 and 4.0 × 10-4, respectively). In conclusion, by performing a large GWAS meta-analysis for QUS parameters of bone using a combination of WGS and deeply imputed genotype data, we have identified five novel genetic loci associated with BUA.


Subject(s)
Osteoporosis/diagnostic imaging , Ultrasonography/methods , Absorptiometry, Photon , Adult , Aged , Aged, 80 and over , Bone Density , Calcaneus/diagnostic imaging , Female , Fractures, Bone/diagnostic imaging , Genome-Wide Association Study , Humans , Male , Middle Aged
8.
BMC Genomics ; 17: 136, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911590

ABSTRACT

BACKGROUND: Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD. It has also recently been suggested that unintended bias can be introduced as a result of adjusting a phenotype for a correlated trait. We performed a GWAS meta-analysis in two populations (total n = 6,696) using BMD data adjusted for only age and gender, in an attempt to identify genetic variants associated with BMD including those that may have potential pleiotropic effects on BMD and body size traits. RESULTS: We observed a single variant, rs2566752, associated with spine BMD at the genome-wide significance level in the meta-analysis (P = 3.36 × 10(-09)). Logistic regression analysis also revealed an association between rs2566752 and fracture rate in one of our study cohorts (P = 0.017, n = 5,654). This is an intronic variant located in the wntless Wnt ligand secretion mediator (WLS) gene (1p31.3), a known BMD locus which encodes an integral component of the Wnt ligand secretion pathway. Bioinformatics analyses of variants in moderate LD with rs2566752 produced strong evidence for a regulatory role for the variants rs72670452, rs17130567 and rs1430738. Expression quantitative trait locus (eQTL) analysis suggested that the variants rs12568456 and rs17130567 are associated with expression of the WLS gene in whole blood, cerebellum and temporal cortex brain tissue (P = 0.034-1.19 × 10(-23)). Gene-wide association testing using the VErsatile Gene-based Association Study 2 (VEGAS2) software revealed associations between the coiled-coil domain containing 170 (CCDC170) gene, located adjacent to the oestrogen receptor 1 (ESR1) gene, and BMD at the spine, femoral neck and total hip sites (P = 1.0 × 10(-06), 2.0 × 10(-06) and 2.0 × 10(-06) respectively). CONCLUSIONS: Genetic variation at the WLS and CCDC170/ESR1 loci were found to be significantly associated with BMD adjusted for only age and gender at the genome-wide level in this meta-analysis.


Subject(s)
Bone Density/genetics , Carrier Proteins/genetics , Estrogen Receptor alpha/genetics , Genome-Wide Association Study , Intracellular Signaling Peptides and Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Femur Neck/pathology , Fractures, Bone/genetics , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Osteoporosis/genetics , Phenotype , Polymorphism, Single Nucleotide , Spine/pathology , Young Adult
9.
J Clin Endocrinol Metab ; 109(4): 992-999, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37962983

ABSTRACT

CONTEXT: Autoimmune thyroid disease (AITD) includes Graves disease (GD) and Hashimoto disease (HD), which often run in the same family. AITD etiology is incompletely understood: Genetic factors may account for up to 75% of phenotypic variance, whereas epigenetic effects (including DNA methylation [DNAm]) may contribute to the remaining variance (eg, why some individuals develop GD and others HD). OBJECTIVE: This work aimed to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) comparing GD to HD. METHODS: Whole-blood DNAm was measured across the genome using the Infinium MethylationEPIC array in 32 Australian patients with GD and 30 with HD (discovery cohort) and 32 Danish patients with GD and 32 with HD (replication cohort). Linear mixed models were used to test for differences in quantile-normalized ß values of DNAm between GD and HD and data were later meta-analyzed. Comb-p software was used to identify DMRs. RESULTS: We identified epigenome-wide significant differences (P < 9E-8) and replicated (P < .05) 2 DMPs between GD and HD (cg06315208 within MDC1 and cg00049440 within KLF9). We identified and replicated a DMR within CUTA (5 CpGs at 6p21.32). We also identified 64 DMPs and 137 DMRs in the meta-analysis. CONCLUSION: Our study reveals differences in DNAm between GD and HD, which may help explain why some people develop GD and others HD and provide a link to environmental risk factors. Additional research is needed to advance understanding of the role of DNAm in AITD and investigate its prognostic and therapeutic potential.


Subject(s)
Graves Disease , Hashimoto Disease , Humans , Adaptor Proteins, Signal Transducing/genetics , Australia/epidemiology , Cell Cycle Proteins/genetics , DNA Methylation , Epigenesis, Genetic , Epigenome , Graves Disease/genetics , Hashimoto Disease/genetics , Kruppel-Like Transcription Factors/genetics
10.
BMC Genet ; 14: 107, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24176111

ABSTRACT

BACKGROUND: Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women. RESULTS: Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 - 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 - 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal. CONCLUSIONS: The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women.


Subject(s)
Bone Density/genetics , Filamins/genetics , Adult , Aged , Alleles , Chromosomes, Human, Pair 3 , Computational Biology , Female , Genotype , Haplotypes , Humans , Introns , Linkage Disequilibrium , Middle Aged , Osteoporosis/etiology , Osteoporosis/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Messenger/metabolism , Risk Factors , Transcription Initiation Site
11.
Genes (Basel) ; 14(4)2023 04 14.
Article in English | MEDLINE | ID: mdl-37107674

ABSTRACT

Osteoporosis is a disease that is characterised by reduced bone mineral density (BMD) and can be exacerbated by the excessive bone resorption of osteoclasts (OCs). Bioinformatic methods, including functional enrichment and network analysis, can provide information about the underlying molecular mechanisms that participate in the progression of osteoporosis. In this study, we harvested human OC-like cells differentiated in culture and their precursor peripheral blood mononuclear cells (PBMCs) and characterised the transcriptome of the two cell types using RNA-sequencing in order to identify differentially expressed genes. Differential gene expression analysis was performed in RStudio using the edgeR package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify enriched GO terms and signalling pathways, with inter-connected regions characterised using protein-protein interaction analysis. In this study, we identified 3201 differentially expressed genes using a 5% false discovery rate; 1834 genes were upregulated, whereas 1367 genes were downregulated. We confirmed a significant upregulation of several well-established OC genes including CTSK, DCSTAMP, ACP5, MMP9, ITGB3, and ATP6V0D2. The GO analysis suggested that upregulated genes are involved in cell division, cell migration, and cell adhesion, while the KEGG pathway analysis highlighted oxidative phosphorylation, glycolysis and gluconeogenesis, lysosome, and focal adhesion pathways. This study provides new information about changes in gene expression and highlights key biological pathways involved in osteoclastogenesis.


Subject(s)
Gene Expression Profiling , Osteoporosis , Humans , RNA-Seq , Gene Expression Profiling/methods , Osteogenesis/genetics , Leukocytes, Mononuclear , Osteoporosis/genetics
12.
Genetics ; 225(2)2023 10 04.
Article in English | MEDLINE | ID: mdl-37579195

ABSTRACT

There has been a growing interest in the role of the subchondral bone and its resident osteoclasts in the progression of osteoarthritis (OA). A recent genome-wide association study (GWAS) identified 100 independent association signals for OA traits. Most of these signals are led by noncoding variants, suggesting that genetic regulatory effects may drive many of the associations. We have generated a unique human osteoclast-like cell-specific expression quantitative trait locus (eQTL) resource for studying the genetics of bone disease. Considering the potential role of osteoclasts in the pathogenesis of OA, we performed an integrative analysis of this dataset with the recently published OA GWAS results. Summary data-based Mendelian randomization (SMR) and colocalization analyses identified 38 genes with a potential role in OA, including some that have been implicated in Mendelian diseases with joint/skeletal abnormalities, such as BICRA, EIF6, CHST3, and FBN2. Several OA GWAS signals demonstrated colocalization with more than one eQTL peak, including at 19q13.32 (hip OA with BCAM, PRKD2, and BICRA eQTL). We also identified a number of eQTL signals colocalizing with more than one OA trait, including FAM53A, GCAT, HMGN1, MGAT4A, RRP7BP, and TRIOBP. An SMR analysis identified 3 loci with evidence of pleiotropic effects on OA-risk and gene expression: LINC01481, CPNE1, and EIF6. Both CPNE1 and EIF6 are located at 20q11.22, a locus harboring 2 other strong OA candidate genes, GDF5 and UQCC1, suggesting the presence of an OA-risk gene cluster. In summary, we have used our osteoclast-specific eQTL dataset to identify genes potentially involved with the pathogenesis of OA.


Subject(s)
Osteoarthritis , Osteoclasts , Humans , Osteoclasts/metabolism , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Gene Expression Regulation , Osteoarthritis/genetics , Osteoarthritis/metabolism
13.
Arthritis Res Ther ; 25(1): 232, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38041181

ABSTRACT

OBJECTIVES: Osteoarthritis (OA) is a joint disease with a heritable component. Genetic loci identified via genome-wide association studies (GWAS) account for an estimated 26.3% of the disease trait variance in humans. Currently, there is no method for predicting the onset or progression of OA. We describe the first use of the Collaborative Cross (CC), a powerful genetic resource, to investigate knee OA in mice, with follow-up targeted multi-omics analysis of homologous regions of the human genome. METHODS: We histologically screened 275 mice for knee OA and conducted quantitative trait locus (QTL) mapping in the complete cohort (> 8 months) and the younger onset sub-cohort (8-12 months). Multi-omic analysis of human genetic datasets was conducted to investigate significant loci. RESULTS: We observed a range of OA phenotypes. QTL mapping identified a genome-wide significant locus on mouse chromosome 19 containing Glis3, the human equivalent of which has been identified as associated with OA in recent GWAS. Mapping the younger onset sub-cohort identified a genome-wide significant locus on chromosome 17. Multi-omic analysis of the homologous region of the human genome (6p21.32) indicated the presence of pleiotropic effects on the expression of the HLA - DPB2 gene and knee OA development risk, potentially mediated through the effects on DNA methylation. CONCLUSIONS: The significant associations at the 6p21.32 locus in human datasets highlight the value of the CC model of spontaneous OA that we have developed and lend support for an immune role in the disease. Our results in mice also add to the accumulating evidence of a role for Glis3 in OA.


Subject(s)
Genome-Wide Association Study , Osteoarthritis, Knee , Humans , Mice , Animals , Osteoarthritis, Knee/genetics , Gene Expression Regulation , Genetic Loci , Phenotype , Genetic Predisposition to Disease/genetics
14.
Nat Commun ; 14(1): 906, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810735

ABSTRACT

Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.


Subject(s)
Bone Resorption , Osteoclasts , Mice , Animals , Osteoclasts/metabolism , Biological Transport , Lysosomes/metabolism , Bone and Bones/metabolism , Cell Membrane/metabolism , Bone Resorption/metabolism
15.
Commun Biol ; 6(1): 691, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402774

ABSTRACT

Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of key genes in bone biology, particularly to intramembranous ossification, not captured at other skeletal sites. We perform a genome-wide association meta-analysis (n ~ 43,800) of SK-BMD, identifying 59 loci, collectively explaining 12.5% of the trait variance. Association signals cluster within gene-sets involved in skeletal development and osteoporosis. Among the four novel loci (ZIC1, PRKAR1A, AZIN1/ATP6V1C1, GLRX3), there are factors implicated in intramembranous ossification and as we show, inherent to craniosynostosis processes. Functional follow-up in zebrafish confirms the importance of ZIC1 on cranial suture patterning. Likewise, we observe abnormal cranial bone initiation that culminates in ectopic sutures and reduced BMD in mosaic atp6v1c1 knockouts. Mosaic prkar1a knockouts present asymmetric bone growth and, conversely, elevated BMD. In light of this evidence linking SK-BMD loci to craniofacial abnormalities, our study provides new insight into the pathophysiology, diagnosis and treatment of skeletal diseases.


Subject(s)
Bone Density , Craniosynostoses , Animals , Bone Density/genetics , Genome-Wide Association Study , Zebrafish/genetics , Skull , Craniosynostoses/genetics , Transcription Factors/genetics
16.
J Endocr Soc ; 6(5): bvac025, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35356007

ABSTRACT

Context: In the clinic it is important to differentiate primary hyperparathyroidism (PHPT) from the more benign, inherited disorder, familial hypocalciuric hypercalcemia (FHH). Since the conditions may sometimes overlap biochemically, identification of calcium-sensing receptor (CASR) gene variants causative of FHH (but not PHPT) is the most decisive diagnostic aid. When novel variants are identified, bioinformatics and functional assessment are required to establish pathogenicity. Objective: We identified 3 novel CASR transmembrane domain missense variants, Thr699Asn, Arg701Gly, and Thr808Pro, in 3 probands provisionally diagnosed with FHH and examined the variants using bioinformatics and functional analysis. Methods: Bioinformatics assessment utilized wANNOVAR software. For functional characterization, each variant was cloned into a mammalian expression vector; wild-type and variant receptors were transfected into HEK293 cells, and their expression and cellular localization were assessed by Western blotting and confocal immunofluorescence, respectively. Receptor activation in HEK293 cells was determined using an IP-One ELISA assay following stimulation with Ca++ ions. Results: Bioinformatics analysis of the variants was unable to definitively assign pathogenicity. Compared with wild-type receptor, all variants demonstrated impaired expression of mature receptor reaching the cell surface and diminished activation at physiologically relevant Ca++ concentrations. Conclusion: Three CASR missense variants identified in probands provisionally diagnosed with FHH result in receptor inactivation and are therefore likely causative of FHH. Inactivation may be due to inadequate processing/trafficking of mature receptor and/or conformational changes induced by the variants affecting receptor signaling. This study demonstrates the value of functional studies in assessing genetic variants identified in hypercalcemic patients.

17.
Eur J Endocrinol ; 185(5): 743-753, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34524976

ABSTRACT

OBJECTIVE: Genetic factors underpin the narrow intraindividual variability of thyroid function, although precise contributions of environmental vs genetic factors remain uncertain. We sought to clarify the heritability of thyroid function traits and thyroid peroxidase antibody (TPOAb) positivity and identify single nucleotide polymorphisms (SNPs) contributing to the trait variance. METHODS: Heritability of thyroid-stimulating hormone (TSH), free T4 (fT4), free T3 (fT3) and TPOAb in a cohort of 2854 euthyroid, dizygous and monozygous twins (age range 11.9-16.9 years) from the Brisbane Longitudinal Twin Study (BLTS) was assessed using structural equation modelling. A genome-wide analysis was conducted on 2832 of these individuals across 7 522 526 SNPs as well as gene-based association analyses. Replication analysis of the association results was performed in the Raine Study (n = 1115) followed by meta-analysis to maximise power for discovery. RESULTS: Heritability of thyroid function parameters in the BLTS was 70.8% (95% CI: 66.7-74.9%) for TSH, 67.5% (59.8-75.3%) for fT4, 59.7% (54.4-65.0%) for fT3 and 48.8% (40.6-56.9%) for TPOAb. The genome-wide association study (GWAS) in the discovery cohort identified a novel association between rs2026401 upstream of NCOA3 and TPOAb. GWAS meta-analysis found associations between TPOAb and rs445219, also near NCOA3, and fT3 and rs12687280 near SERPINA7. Gene-based association analysis highlighted SERPINA7 for fT3 and NPAS3 for fT4. CONCLUSION: Our findings resolve former contention regarding heritability estimates of thyroid function traits and TPOAb positivity. GWAS and gene-based association analysis identified variants accounting for a component of this heritability.


Subject(s)
Genome-Wide Association Study , Nuclear Receptor Coactivator 3/genetics , Thyroid Function Tests , Thyroid Gland/physiology , Thyroxine-Binding Globulin/genetics , Adolescent , Australia/epidemiology , Cohort Studies , Female , Humans , Iodide Peroxidase/analysis , Iodide Peroxidase/immunology , Longitudinal Studies , Male , Polymorphism, Single Nucleotide , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood , Twins, Monozygotic
18.
Ann Intern Med ; 151(8): 528-37, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19841454

ABSTRACT

BACKGROUND: Osteoporosis is a highly heritable trait. Many candidate genes have been proposed as being involved in regulating bone mineral density (BMD). Few of these findings have been replicated in independent studies. OBJECTIVE: To assess the relationship between BMD and fracture and all common single-nucleotide polymorphisms (SNPs) in previously proposed osteoporosis candidate genes. DESIGN: Large-scale meta-analysis of genome-wide association data. SETTING: 5 international, multicenter, population-based studies. PARTICIPANTS: Data on BMD were obtained from 19 195 participants (14 277 women) from 5 populations of European origin. Data on fracture were obtained from a prospective cohort (n = 5974) from the Netherlands. MEASUREMENTS: Systematic literature review using the Human Genome Epidemiology Navigator identified autosomal genes previously evaluated for association with osteoporosis. We explored the common SNPs arising from the haplotype map of the human genome (HapMap) across all these genes. BMD at the femoral neck and lumbar spine was measured by dual-energy x-ray absorptiometry. Fractures were defined as clinically apparent, site-specific, validated nonvertebral and vertebral low-energy fractures. RESULTS: 150 candidate genes were identified and 36 016 SNPs in these loci were assessed. SNPs from 9 gene loci (ESR1, LRP4, ITGA1, LRP5, SOST, SPP1, TNFRSF11A, TNFRSF11B, and TNFSF11) were associated with BMD at either site. For most genes, no SNP was statistically significant. For statistically significant SNPs (n = 241), effect sizes ranged from 0.04 to 0.18 SD per allele. SNPs from the LRP5, SOST, SPP1, and TNFRSF11A loci were significantly associated with fracture risk; odds ratios ranged from 1.13 to 1.43 per allele. These effects on fracture were partially independent of BMD at SPP1 and SOST. LIMITATION: Only common polymorphisms in linkage disequilibrium with SNPs in HapMap could be assessed, and previously reported associations for SNPs in some candidate genes could not be excluded. CONCLUSION: In this large-scale collaborative genome-wide meta-analysis, 9 of 150 candidate genes were associated with regulation of BMD, 4 of which also significantly affected risk for fracture. However, most candidate genes had no consistent association with BMD.


Subject(s)
Bone Density/genetics , Fractures, Bone/genetics , Osteoporosis/genetics , Polymorphism, Single Nucleotide , Female , Fractures, Bone/etiology , Genotype , Humans , Linkage Disequilibrium , Male , Osteoporosis/complications , Prospective Studies , Risk Factors
19.
Am J Med Genet B Neuropsychiatr Genet ; 153B(2): 428-437, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-19569075

ABSTRACT

Neuritin 1 (NRN1), an activity-regulated gene with multiple roles in neurodevelopment and synaptic plasticity, is located within the 6p24-p25 interval on chromosome 6, previously identified as linked to a subtype of schizophrenia (SZ) characterized by pervasive cognitive deficit (CD). We have tested the effect of NRN1 sequence variation on susceptibility to SZ and on general cognitive ability in patients and non-psychiatric control subjects by re-sequencing the coding regions of NRN1 and its flanking sequences, and genotyping 19 single-nucleotide polymorphisms (SNPs) in 336 SZ patients and 172 healthy control individuals. All participants completed comprehensive neurocognitive assessment, including tests estimating premorbid/prior IQ and current IQ. Logistic regression analyses found no significant association for any of the 19 SNPs with SZ or its CD subtype. However, linear regression analysis gave significant association (P = 0.024 and P = 0.027 after correction for multiple testing) for polymorphisms rs1475157 and rs9405890 with current IQ in the patient group. In SZ, the rs1475157-rs9405890 haplotypes revealed a highly significant association with the abstraction component of current ("fluid") intelligence (P = 0.0014), and with percentage loss of IQ points between premorbid and current intelligence (P = 0.0041). Results in the control group were not significant after correction. This is the first analysis of association between variation in NRN1 and SZ. The findings suggest a role of NRN1 as a modifier of cognitive functioning in SZ, with implications for future research into the impact of the environment on the development and maintenance of "fluid" intelligence.


Subject(s)
Neuropeptides/genetics , Polymorphism, Genetic , Schizophrenia/genetics , Chromosomes, Human, Pair 6/ultrastructure , Cognition , Female , GPI-Linked Proteins/genetics , Genetic Predisposition to Disease , Humans , Intelligence Tests , Male , Models, Neurological , Neuronal Plasticity , Phenotype , Polymorphism, Single Nucleotide , Synapses/pathology
20.
Sci Rep ; 10(1): 19173, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154494

ABSTRACT

The bone marrow microenvironment (BMM) plays a key role in leukemia progression, but its molecular complexity in pre-B cell acute lymphoblastic leukemia (B-ALL), the most common cancer in children, remains poorly understood. To gain further insight, we used single-cell RNA sequencing to characterize the kinetics of the murine BMM during B-ALL progression. Normal pro- and pre-B cells were found to be the most affected at the earliest stages of disease and this was associated with changes in expression of genes regulated by the AP1-transcription factor complex and regulatory factors NELFE, MYC and BCL11A. Granulocyte-macrophage progenitors show reduced expression of the tumor suppressor long non-coding RNA Neat1 and disruptions in the rate of transcription. Intercellular communication networks revealed monocyte-dendritic precursors to be consistently active during B-ALL progression, with enriched processes including cytokine-mediated signaling pathway, neutrophil-mediated immunity and regulation of cell migration and proliferation. In addition, we confirmed that the hematopoietic stem and progenitor cell compartment was perturbed during leukemogenesis. These findings extend our understanding of the complexity of changes and molecular interactions among the normal cells of the BMM during B-ALL progression.


Subject(s)
B-Lymphocytes/pathology , Bone Marrow Cells/metabolism , Bone Marrow/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Microenvironment , Animals , B-Lymphocytes/metabolism , Bone Marrow/metabolism , Disease Progression , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL