Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 451: 139465, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38677132

ABSTRACT

This work aimed to synthesize oregano essential oil/ß-cyclodextrin microcapsules (OEO/ß-CDs) and then prepare gelatin-based controlled-release antibacterial films with different OEO/ß-CDs contents (0%-2%) for chilling preservation of grass carp fillets. The results of FTIR, XRD, DSC and accelerated release ratio showed that OEO was successfully encapsulated in OEO/ß-CDs and its thermal stability was effectively improved. Moreover, at 2% of addition amount of OEO/ß-CDs, the tensile strength of the films increased from 14.43 MPa to 18.72 MPa. In addition, the films showed significant antibacterial activity against Pseudomonas (61.52%), Aeromonas (62.87%), and Shewanella putrefaciens (66.67%). Preservation experiments showed that the films effectively prevented the increase of TVB-N, and TBA value of the refrigerated fillets and significantly suppressed the growth of spoilage organisms, thus extending the shelf life by 2-3 days. Therefore, the synthesized film has promising potential as an active packaging material for the preservation of grass carp.


Subject(s)
Anti-Bacterial Agents , Capsules , Carps , Delayed-Action Preparations , Food Preservation , Gelatin , Oils, Volatile , Origanum , beta-Cyclodextrins , Animals , Carps/microbiology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Gelatin/chemistry , Food Preservation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Origanum/chemistry , Capsules/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , beta-Cyclodextrins/chemistry , Food Packaging/instrumentation , Bacteria/drug effects , Bacteria/growth & development , Cold Temperature
2.
Polymers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139899

ABSTRACT

In the current era, the treatment of collagen hydrogels with natural phenolics for the improvement in physicochemical properties has been the subject of considerable attention. The present research aimed to fabricate collagen hydrogels cross-linked with gallic acid (GA) and ellagic acid (EA) at different concentrations depending on the collagen dry weight. The structural, enzymatic, thermal, morphological, and physical properties of the native collagen hydrogels were compared with those of the GA/EA cross-linked hydrogels. XRD and FTIR spectroscopic analyses confirmed the structural stability and reliability of the collagen after treatment with either GA or EA. The cross-linking also significantly contributed to the improvement in the storage modulus, of 435 Pa for 100% GA cross-linked hydrogels. The thermal stability was improved, as the highest residual weight of 43.8% was obtained for the hydrogels cross-linked with 50% GA in comparison with all the other hydrogels. The hydrogels immersed in 30%, 50%, and 100% concentrations of GA also showed improved swelling behavior and porosity, and the highest resistance to type 1 collagenase (76.56%), was obtained for 50% GA cross-linked collagen hydrogels. Moreover, GA 100% and EA 100% obtained the highest denaturation temperatures (Td) of 74.96 °C and 75.78 °C, respectively. In addition, SEM analysis was also carried out to check the surface morphology of the pristine collagen hydrogels and the cross-linked collagen hydrogels. The result showed that the hydrogels cross-linked with GA/EA were denser and more compact. However, the improved physicochemical properties were probably due to the formation of hydrogen bonds between the phenolic hydroxyl groups of GA and EA and the nitrogen atoms of the collagen backbone. The presence of inter- and intramolecular cross-links between collagen and GA or EA components and an increased density of intermolecular bonds suggest potential hydrogen bonding or hydrophobic interactions. Overall, the present study paves the way for further investigations in the field by providing valuable insights into the GA/EA interaction with collagen molecules.

SELECTION OF CITATIONS
SEARCH DETAIL