Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 121(25): e2316376121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861603

ABSTRACT

Human parainfluenza virus type 3 (HPIV3) is a major pediatric respiratory pathogen lacking available vaccines or antiviral drugs. We generated live-attenuated HPIV3 vaccine candidates by codon-pair deoptimization (CPD). HPIV3 open reading frames (ORFs) encoding the nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and polymerase (L) were modified singly or in combination to generate 12 viruses designated Min-N, Min-P, Min-M, Min-FHN, Min-L, Min-NP, Min-NPM, Min-NPL, Min-PM, Min-PFHN, Min-MFHN, and Min-PMFHN. CPD of N or L severely reduced growth in vitro and was not further evaluated. CPD of P or M was associated with increased and decreased interferon (IFN) response in vitro, respectively, but had little effect on virus replication. In Vero cells, CPD of F and HN delayed virus replication, but final titers were comparable to wild-type (wt) HPIV3. In human lung epithelial A549 cells, CPD F and HN induced a stronger IFN response, viral titers were reduced 100-fold, and the expression of F and HN proteins was significantly reduced without affecting N or P or the relative packaging of proteins into virions. Following intranasal infection in hamsters, replication in the nasal turbinates and lungs tended to be the most reduced for viruses bearing CPD F and HN, with maximum reductions of approximately 10-fold. Despite decreased in vivo replication (and lower expression of CPD F and HN in vitro), all viruses induced titers of serum HPIV3-neutralizing antibodies similar to wt and provided complete protection against HPIV3 challenge. In summary, CPD of HPIV3 yielded promising vaccine candidates suitable for further development.


Subject(s)
Codon , Parainfluenza Virus 3, Human , Vaccines, Attenuated , Virus Replication , Animals , Parainfluenza Virus 3, Human/immunology , Parainfluenza Virus 3, Human/genetics , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Codon/genetics , Cricetinae , Respirovirus Infections/immunology , Respirovirus Infections/prevention & control , Respirovirus Infections/virology , Chlorocebus aethiops , Vero Cells , Open Reading Frames/genetics , Mesocricetus , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Proteins/immunology , Viral Proteins/genetics , Parainfluenza Vaccines/immunology , Parainfluenza Vaccines/genetics
2.
Proc Natl Acad Sci U S A ; 121(23): e2403796121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809710

ABSTRACT

Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-ß and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/ß levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-ß mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-ß responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.


Subject(s)
Interferon Type I , Malaria , Plasmodium yoelii , Receptors, Odorant , Animals , Mice , Malaria/immunology , Malaria/parasitology , Malaria/metabolism , Humans , HEK293 Cells , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL
3.
Nat Commun ; 15(1): 3553, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670948

ABSTRACT

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Male , Antibodies, Viral/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Genetic Vectors/genetics , Antibodies, Neutralizing/immunology , Administration, Intranasal , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Immunoglobulin A/immunology , CD4-Positive T-Lymphocytes/immunology , Humans
4.
iScience ; 26(12): 108490, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38144450

ABSTRACT

Next-generation SARS-CoV-2 vaccines are needed that induce systemic and mucosal immunity. Murine pneumonia virus (MPV), a murine homolog of respiratory syncytial virus, is attenuated by host-range restriction in nonhuman primates and has a tropism for the respiratory tract. We generated MPV vectors expressing the wild-type SARS-CoV-2 spike protein (MPV/S) or its prefusion-stabilized form (MPV/S-2P). Both vectors replicated similarly in cell culture and stably expressed S. However, only S-2P was associated with MPV particles. After intranasal/intratracheal immunization of rhesus macaques, MPV/S and MPV/S-2P replicated to low levels in the airways. Despite its low-level replication, MPV/S-2P induced high levels of mucosal and serum IgG and IgA to SARS-CoV-2 S or its receptor-binding domain. Serum antibodies from MPV/S-2P-immunized animals efficiently inhibited ACE2 receptor binding to S proteins of variants of concern. Based on its attenuation and immunogenicity in macaques, MPV/S-2P will be further evaluated as a live-attenuated vaccine for intranasal immunization against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL