ABSTRACT
Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions. Here, we show that under high-salt conditions, an alternative pathway regulates LBD16 expression. Salt represses auxin signaling but, in parallel, activates ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6), a transcriptional activator of LBD16. ZAT6 activates LBD16 expression, thus contributing to downstream cell wall remodeling and promoting LR development under high-salt conditions. Our study thus shows that the integration of auxin-dependent repressive and salt-activated auxin-independent pathways converging on LBD16 modulates root branching under high-salt conditions.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Salinity , Plant Roots/metabolism , Gene Expression Regulation, PlantABSTRACT
Plant cell walls delimit plant cells from their environment and provide mechanical stability to withstand internal turgor pressure as well as external influences. Environmental factors can be beneficial or harmful for the plants and vary substantially depending on prevailing combinations of climate conditions and stress exposure. Consequently, the physicochemical properties of plant cell walls need to be adaptive, and their functional integrity needs to be monitored by the plant. One major threat to plants is posed by phytopathogens, which employ a diversity of infection strategies and lifestyles to colonise host tissues. During these interactions, the plant cell wall represents a barrier that impedes the colonisation of host tissues and pathogen spread. In a tussle over maintenance and breakdown, plant cell walls can be rapidly and efficiently remodelled by enzymatic activities of plant and pathogen origin, heavily influencing the outcome of plant-pathogen interactions. We review the role of locally and systemically induced cell wall remodelling and the importance of tissue-dependent cell wall properties for the interaction with pathogens. Furthermore, we discuss the importance of cell wall-dependent signalling for defence response induction and the influence of abiotic factors on cell wall integrity and cell wall-associated pathogen resistance mechanisms.
ABSTRACT
Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant pattern recognition receptors. Such molecular patterns are consequence of host-pathogen interactions and the response cascade activated after their perception is known as pattern-triggered immunity (PTI). Glucans have emerged as key players in PTI, but the ability of certain glucans to stimulate defensive responses in plants remains understudied. This work focused on identifying novel glucan oligosaccharides as molecular patterns. The ability of various microorganism-derived glucans to prompt PTI responses was tested, revealing that specific microbial-derived molecules, such as short linear ß-1,2-glucans, trigger this response in plants by increasing the production of reactive oxygen species (ROS), MAP kinase phosphorylation, and differential expression of defence-related genes in Arabidopsis thaliana. Pretreatments with ß-1,2-glucan trisaccharide (B2G3) improved Arabidopsis defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge generated was then transferred to the monocotyledonous model species maize and wheat, confirming that these plants also respond to ß-1,2-glucans, with increased ROS production and improved protection against fungal infections following B2G3 pretreatments. In summary, as with other ß-glucans, plants perceive ß-1,2-glucans as warning signals and stimulate defence responses against phytopathogens.