Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Case Rep Pathol ; 2024: 9213132, 2024.
Article in English | MEDLINE | ID: mdl-39310291

ABSTRACT

We herein report an autopsy case of a fulminant Clostridium perfringens (C. perfringens or Welch bacilli) infection in a healthy adult. A 72-year-old, immunocompetent man visited the emergency department with lower back pain, and blood test revealed hemolytic attack. His condition rapidly worsened with severe acidosis and anemia, and he died despite symptomatic treatment. An autopsy examination demonstrated an abscess with necrosis and air spaces in the right lobe of his liver. Numerous Gram-positive bacilli were seen in the liver and bone marrow, and C. perfringens was identified in culture of the antemortem blood sample. Of note, a mucosal epithelium of the ileum showed loss of tight junctions (claudin 4), suggesting the involvement of C. perfringens toxins with its systemic spreading. Welch toxins were suggested to be involved in serious pathological conditions such as hemolytic anemia and systemic infections, and it is necessary to raise Welch infection as one of the differential diagnoses for fulminant systemic infections even in healthy individuals.

2.
Cureus ; 16(1): e52814, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38389647

ABSTRACT

Nuclear protein in testis (NUT) carcinoma is a rare but highly aggressive carcinoma, driven by genetic rearrangement of the NUT midline carcinoma family member 1 (NUTM1) gene on chromosome 15q14. Recently, a tight link has been suggested between genetic abnormalities and subsequent metabolic and epigenetic dysregulation to drive the progression of malignant tumors. However, it remains elusive whether such reprogramming could contribute to the pathogenesis of NUT carcinoma. We herein report an autopsy case of NUT carcinoma arising in the retroperitoneum of a 31-year-old male. Notably, reprogramming of glycolytic metabolism and epigenetic histone modifications was observed in this unusual NUT carcinoma case, and this phenomenon was further confirmed by an in vitro cell culture model with bromodomain containing 4 (BRD4)-NUT overexpression. The rationale for documenting the case is based on our findings to reveal that metabolic and epigenetic reprogramming could be one of the contributing factors to the pathogenesis of NUT carcinoma, which could be exploitable as a novel therapeutic target for this rare and aggressive cancer type.

3.
Acta Neuropathol Commun ; 12(1): 40, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481314

ABSTRACT

DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Glioblastoma/pathology , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , DNA Methylation , Phenotype , Brain Neoplasms/pathology , DNA/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Protein-Tyrosine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL