Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Antimicrob Agents Chemother ; 65(10): e0115521, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34310217

ABSTRACT

Remdesivir (RDV; GS-5734) is currently the only FDA-approved antiviral drug for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The drug is approved for use in adults or children 12 years or older who are hospitalized for the treatment of COVID-19 on the basis of an acceleration of clinical recovery for inpatients with this disease. Unfortunately, the drug must be administered intravenously, restricting its use to those requiring hospitalization for relatively advanced disease. RDV is also unstable in plasma and has a complex activation pathway which may contribute to its highly variable antiviral efficacy in SARS-CoV-2-infected cells. Potent orally bioavailable antiviral drugs for early treatment of SARS-CoV-2 infection are urgently needed, and several, including molnupiravir and PF-07321332, are currently in clinical development. We focused on making simple, orally bioavailable lipid analogs of remdesivir nucleoside (RVn; GS-441524) that are processed to RVn monophosphate, the precursor of the active RVn triphosphate, by a single-step intracellular cleavage. In addition to high oral bioavailability, stability in plasma, and simpler metabolic activation, new oral lipid prodrugs of RVn had submicromolar anti-SARS-CoV-2 activity in a variety of cell types, including Vero E6, Calu-3, Caco-2, human pluripotent stem cell (PSC)-derived lung cells, and Huh7.5 cells. In Syrian hamsters, oral treatment with 1-O-octadecyl-2-O-benzyl-glycero-3-phosphate RVn (ODBG-P-RVn) was well tolerated and achieved therapeutic levels in plasma above the 90% effective concentration (EC90) for SARS-CoV-2. The results suggest further evaluation as an early oral treatment for SARS-CoV-2 infection to minimize severe disease and reduce hospitalizations.


Subject(s)
COVID-19 Drug Treatment , Prodrugs , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Caco-2 Cells , Cricetinae , Humans , Lipids , SARS-CoV-2
2.
Intern Med J ; 47(3): 299-306, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27925382

ABSTRACT

BACKGROUND: Increasing the amount of clinical research that occurs in healthcare settings has been identified as an important mechanism to improve healthcare outcomes. While clinicians are key persons in achieving this aim, research participation amongst clinicians is generally limited. AIMS: To identify the factors (barriers and facilitators) influencing clinician research participation and determine how professional culture impacts on these factors. METHODS: Forty clinicians working at a tertiary children's hospital participated in six discipline-specific focus groups. Thematic analysis was performed using an inductive process based in grounded theory. RESULTS: Four major themes (cultural factors, personal factors, resources and solutions) and 16 subthemes were identified. Participants described how the current health system discourages clinician research. They reported that their research participation requires personal sacrifice of their own time; income or career progression. Research participation was seen to compete with other priorities in clinicians' workload and is disadvantaged because of the primacy of clinical work and the lack of immediate tangible benefit from research projects. Solutions suggested by our participants included better alignment of clinical and research goals, improved availability of research mentors and collaborative opportunities. Nurses and allied health professionals reported a changing professional culture that values research. Only doctors identified research participation to be important for career progression. CONCLUSIONS: For clinician research participation to flourish, significant changes in healthcare structure and priorities will be required that result in research becoming more embedded in healthcare delivery. Initiatives to improve collaboration between clinicians and universities may also support these aims.


Subject(s)
Attitude of Health Personnel , Biomedical Research , Hospitals, Pediatric/standards , Pediatrics , Physicians , Adult , Allied Health Personnel , Australia , Cooperative Behavior , Data Collection , Female , Focus Groups , Humans , Male , Middle Aged , Pediatrics/education , Pediatrics/standards , Research Personnel
3.
Antiviral Res ; 219: 105718, 2023 11.
Article in English | MEDLINE | ID: mdl-37758067

ABSTRACT

Broad spectrum oral antivirals are urgently needed for the early treatment of many RNA viruses of clinical concern. We previously described the synthesis of 1-O-octadecyl-2-O-benzyl-glycero-3-phospho-RVn (V2043), an orally bioavailable lipid prodrug of remdesivir nucleoside (RVn, GS-441524) with broad spectrum antiviral activity against viruses with pandemic potential. Here we compared the relative activity of V2043 with new RVn lipid prodrugs containing sn-1 alkyl ether or sn-2 glycerol modifications. We found that 3-F-4-MeO-Bn, 3-CN-Bn, and 4-CN-Bn sn-2 glycerol modifications improved antiviral activity compared to V2043 when tested in vitro against clinically important RNA viruses from 5 virus families. These results support the continued development of V2043 and sn-2 glycerol modified RVn lipid prodrugs for the treatment of a broad range of RNA viruses for which there are limited therapies.


Subject(s)
Antiviral Agents , Prodrugs , Antiviral Agents/pharmacology , Prodrugs/pharmacology , Nucleosides/pharmacology , Glycerol , Lipids/pharmacology
4.
J Med Chem ; 66(8): 5802-5819, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37040439

ABSTRACT

Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections.


Subject(s)
Antiviral Agents , COVID-19 , Animals , Mice , SARS-CoV-2 , Phospholipids
5.
Microbiol Spectr ; 9(3): e0153721, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34817209

ABSTRACT

The necessity for intravenous administration of remdesivir confines its utility for treatment of coronavirus disease 2019 (COVID-19) to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524), against viruses that cause diseases of human public health concern, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had activity nearly equivalent to that of remdesivir in primary-like human small airway epithelial cells. Our results warrant in vivo efficacy evaluation of ODBG-P-RVn. IMPORTANCE While remdesivir remains one of the few drugs approved by the FDA to treat coronavirus disease 2019 (COVID-19), its intravenous route of administration limits its use to hospital settings. Optimizing the stability and absorption of remdesivir may lead to a more accessible and clinically potent therapeutic. Here, we describe an orally available lipid-modified version of remdesivir with activity nearly equivalent to that of remdesivir against emerging viruses that cause significant disease, including Ebola and Nipah viruses. Our work highlights the importance of such modifications to optimize drug delivery to relevant and appropriate human tissues that are most affected by such diseases.


Subject(s)
Adenosine Monophosphate/therapeutic use , Adenosine/therapeutic use , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Nucleosides/therapeutic use , Prodrugs/therapeutic use , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Glyceryl Ethers/therapeutic use , Humans , Lipids , SARS-CoV-2
6.
bioRxiv ; 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-32869033

ABSTRACT

Remdesivir (RDV, GS-5734) is currently the only FDA-approved antiviral drug for the treatment of SARS CoV-2 infection. The drug is approved for use in adults or children 12-years or older who are hospitalized for the treatment of COVID-19 on the basis of an acceleration of clinical recovery for inpatients with this disease. Unfortunately, the drug must be administered intravenously, restricting its use to those requiring hospitalization for relatively advanced disease. RDV is also unstable in plasma and has a complex activation pathway which may contribute to its highly variable antiviral efficacy in SARS-CoV-2 infected cells. Potent orally bioavailable antiviral drugs for early treatment of SARS-CoV-2 infection are urgently needed and several including molnupiravir and PF-07321332 are currently in clinical development. We focused on making simple, orally bioavailable lipid analogs of Remdesivir nucleoside (RVn, GS-441524) that are processed to RVn-monophosphate, the precursor of the active RVn-triphosphate, by a single-step intracellular cleavage. In addition to high oral bioavailability, stability in plasma and simpler metabolic activation, new oral lipid prodrugs of RVn had submicromolar anti-SARS-CoV-2 activity in a variety of cell types including Vero E6, Calu-3, Caco-2, human pluripotent stem cell (PSC)-derived lung cells and Huh7.5 cells. In Syrian hamsters oral treatment with ODBG-P-RVn was well tolerated and achieved therapeutic levels in plasma above the EC90 for SARS-CoV-2. The results suggest further evaluation as an early oral treatment for SARS-CoV-2 infection to minimize severe disease and reduce hospitalizations.

8.
Brain Res ; 993(1-2): 30-41, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14642828

ABSTRACT

The integration of 'long-term' adiposity signaling with the 'short-term' meal-related signal cholecystokinin (CCK) is proposed to involve descending hypothalamic projections to areas of the caudal brainstem (CBS) that regulate the amount of food consumed during a single meal. One such projection extends from cell bodies in the hypothalamic paraventricular nucleus (PVN) to the nucleus tractus solitarius (NTS), where cells that respond to peripheral CCK are concentrated. Candidate neuronal cell types that may comprise this PVN-NTS projection includes those expressing corticotropin-releasing hormone (CRH) or oxytocin. We therefore sought to determine whether oxytocin or CRH axons are preferentially located in close anatomical proximity to neurons of the NTS that are activated by peripheral administration of CCK, as determined by immunocytochemical staining for Fos protein. Rats received injections of either an anorexic dose of CCK (8 nmol/kg, i.p.) or vehicle and were perfused 2 h later with 4% paraformaldehyde. Immunocytochemistry was performed on cryostat sections (14 microm) of caudal brainstem, using a polyclonal antibody to Fos protein and either a monoclonal antibody to oxytocin or a polyclonal antibody to CRH. As expected, CCK administration significantly increased the numbers of Fos-positive neurons by 489% (p<0.01) and 400% (p<0.01), respectively, in the medial and gelatinosus subdivisions of the NTS. These same regions received dense oxytocin axon innervation, whereas CRH immunoreactivity was not as prevalent in these areas. In areas outside the NTS, such as the dorsal motor nucleus of the vagus (DMV), Fos activation was absent despite a dense oxytocin and CRH innervation. To investigate whether CCK-induced reductions of food intake require intact oxytocin signaling, we performed a separate study in which CCK injection was preceded by injection into the fourth ventricle of an oxytocin receptor antagonist [d(CH(2))(5), Tyr (Me)(2), Orn(8)]-vasotocin (OVT). This study showed CCK was 23% and 22% less effective at inhibiting food intake at 30 min (p<0.05) and 1 h (p<0.05) food intake, respectively, in the presence of OVT. Taken together, the data indicate that oxytocin axons within the descending pathway from the PVN to the NTS are anatomically positioned to interact with NTS neurons that respond to vagally mediated peripheral CCK signals such as those that occur following ingestion of a meal. These findings support the hypothesis that oxytocin exerts a tonic stimulatory effect on the response of key neurons within the NTS to CCK and further reduce meal size.


Subject(s)
Arginine Vasopressin/analogs & derivatives , Brain Stem/drug effects , Corticotropin-Releasing Hormone/metabolism , Neural Pathways/drug effects , Oxytocin/metabolism , Sincalide/pharmacology , Analysis of Variance , Animals , Arginine Vasopressin/pharmacology , Axons/drug effects , Axons/metabolism , Behavior, Animal/drug effects , Brain Stem/metabolism , Cell Count/methods , Drug Interactions , Eating/drug effects , Hormone Antagonists/pharmacology , Immunohistochemistry/methods , Male , Neural Pathways/metabolism , Neurons/metabolism , Oncogene Proteins v-fos/metabolism , Rats , Rats, Wistar , Solitary Nucleus/cytology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL