Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cells ; 13(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38534327

ABSTRACT

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, yet the cellular and molecular mechanisms underlying the AF substrate remain unclear. Isolevuglandins (IsoLGs) are highly reactive lipid dicarbonyl products that mediate oxidative stress-related injury. In murine hypertension, the lipid dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) reduced IsoLGs and AF susceptibility. We hypothesized that IsoLGs mediate detrimental pathophysiologic effects in atrial cardiomyocytes that promote the AF substrate. Using Seahorse XFp extracellular flux analysis and a luminescence assay, IsoLG exposure suppressed intracellular ATP production in atrial HL-1 cardiomyocytes. IsoLGs caused mitochondrial dysfunction, with reduced mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) with protein carbonylation, and mitochondrial DNA damage. Moreover, they generated cytosolic preamyloid oligomers previously shown to cause similar detrimental effects in atrial cells. In mouse atrial and HL-1 cells, patch clamp experiments demonstrated that IsoLGs rapidly altered action potentials (AP), implying a direct effect independent of oligomer formation by reducing the maximum Phase 0 upstroke slope and shortening AP duration due to ionic current modifications. IsoLG-mediated mitochondrial and electrophysiologic abnormalities were blunted or totally prevented by 2-HOBA. These findings identify IsoLGs as novel mediators of oxidative stress-dependent atrial pathophysiology and support the investigation of dicarbonyl scavengers as a novel therapeutic approach to prevent AF.


Subject(s)
Atrial Fibrillation , Benzylamines , Mitochondrial Diseases , Animals , Mice , Myocytes, Cardiac/metabolism , Lipids/chemistry , Reactive Oxygen Species/metabolism
2.
Cardiovasc Res ; 120(8): 899-913, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38377486

ABSTRACT

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.


Subject(s)
Action Potentials , Adaptor Proteins, Signal Transducing , Atrial Fibrillation , Disease Models, Animal , Interleukin-1beta , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac , Animals , Female , Humans , Male , Action Potentials/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/genetics , Benzylamines/pharmacology , Genetic Predisposition to Disease , Heart Rate/drug effects , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Phenotype , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL