ABSTRACT
While there has been significant progress in controlling falciparum malaria in the Lao People's Democratic Republic (PDR), sporadic cases persist in southern provinces where the extent and patterns of transmission remain largely unknown. To assess parasite transmission in this area, 53 Plasmodium falciparum (Pf) positive cases detected through active test and treat campaigns from December 2017 to November 2018 were sequenced, targeting 204 highly polymorphic amplicons. Two R packages, MOIRE and Dcifer, were applied to assess the multiplicity of infections (MOI), effective MOI (eMOI), within-host parasite relatedness, and between-host parasite relatedness ([Formula: see text]). Genomic data were integrated with survey data to characterize the temporal and spatial structures of identified clusters. The positive cases were mainly captured during the focal test and treat campaign conducted in 2018, and in the Pathoomphone area, which had the highest test positivity and forest activity. About 30% of the cases were polyclonal infections, with over half of theses (63%) showing within-host relatedness greater than 0.6, suggesting that cotransmission rather than superinfection was primarily responsible for maintaining polyclonality. A large majority of cases (81%) were infected by parasites genetically linked to one or more other cases. We identified five genetically distinct clusters in forest fringe villages within the Pathoomphone district, characterized by a high degree of genetic relatedness between parasites (mean [Formula: see text] = 0.8). Four smaller clusters of 2-3 cases linked Moonlapamok and Pathoomphone districts, with an average [Formula: see text] of 0.6, suggesting cross-district transmission. Most of the clustered cases occurred within 20 km and 2 months of each other, consistent with focal transmission. Transmission clusters identified in this study confirm the role of ongoing focal parasite transmission occurring within the forest or forest-fringe in the highly mobile population.
Subject(s)
Forests , Malaria, Falciparum , Plasmodium falciparum , Laos/epidemiology , Plasmodium falciparum/genetics , Humans , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Female , Adult , Adolescent , Child , Middle Aged , Young Adult , Genomics/methods , Child, PreschoolABSTRACT
MOTIVATION: Malaria parasite genetic data can provide insight into parasite phenotypes, evolution, and transmission. However, estimating key parameters such as allele frequencies, multiplicity of infection (MOI), and within-host relatedness from genetic data is challenging, particularly in the presence of multiple related coinfecting strains. Existing methods often rely on single nucleotide polymorphism (SNP) data and do not account for within-host relatedness. RESULTS: We present Multiplicity Of Infection and allele frequency REcovery (MOIRE), a Bayesian approach to estimate allele frequencies, MOI, and within-host relatedness from genetic data subject to experimental error. MOIRE accommodates both polyallelic and SNP data, making it applicable to diverse genotyping panels. We also introduce a novel metric, the effective MOI (eMOI), which integrates MOI and within-host relatedness, providing a robust and interpretable measure of genetic diversity. Extensive simulations and real-world data from a malaria study in Namibia demonstrate the superior performance of MOIRE over naive estimation methods, accurately estimating MOI up to seven with moderate-sized panels of diverse loci (e.g. microhaplotypes). MOIRE also revealed substantial heterogeneity in population mean MOI and mean relatedness across health districts in Namibia, suggesting detectable differences in transmission dynamics. Notably, eMOI emerges as a portable metric of within-host diversity, facilitating meaningful comparisons across settings when allele frequencies or genotyping panels differ. Compared to existing software, MOIRE enables more comprehensive insights into within-host diversity and population structure. AVAILABILITY AND IMPLEMENTATION: MOIRE is available as an R package at https://eppicenter.github.io/moire/.
Subject(s)
Bayes Theorem , Gene Frequency , Polymorphism, Single Nucleotide , Software , Humans , Malaria , Alleles , Plasmodium falciparum/genetics , GenotypeABSTRACT
BACKGROUND: Targeted next-generation sequencing offers the potential for consistent, deep coverage of information-rich genomic regions to characterize polyclonal Plasmodium falciparum infections. However, methods to identify and sequence these genomic regions are currently limited. METHODS: A bioinformatic pipeline and multiplex methods were developed to identify and simultaneously sequence 100 targets and applied to dried blood spot (DBS) controls and field isolates from Mozambique. For comparison, whole-genome sequencing data were generated for the same controls. RESULTS: Using publicly available genomes, 4465 high-diversity genomic regions suited for targeted sequencing were identified, representing the P. falciparum heterozygome. For this study, 93 microhaplotypes with high diversity (median expected heterozygosityâ =â 0.7) were selected along with 7 drug resistance loci. The sequencing method achieved very high coverage (median 99%), specificity (99.8%), and sensitivity (90% for haplotypes with 5% within sample frequency in dried blood spots with 100 parasites/µL). In silico analyses revealed that microhaplotypes provided much higher resolution to discriminate related from unrelated polyclonal infections than biallelic single-nucleotide polymorphism barcodes. CONCLUSIONS: The bioinformatic and laboratory methods outlined here provide a flexible tool for efficient, low-cost, high-throughput interrogation of the P. falciparum genome, and can be tailored to simultaneously address multiple questions of interest in various epidemiological settings.
Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Humans , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Whole Genome Sequencing/methodsABSTRACT
BACKGROUND: Inference of person-to-person transmission networks using surveillance data is increasingly used to estimate spatiotemporal patterns of pathogen transmission. Several data types can be used to inform transmission network inferences, yet the sensitivity of those inferences to different data types is not routinely evaluated. METHODS: The influence of different combinations of spatial, temporal, and travel-history data on transmission network inferences for Plasmodium falciparum malaria were evaluated. RESULTS: The information content of these data types may be limited for inferring person-to-person transmission networks and may lead to an overestimate of transmission. Only when outbreaks were temporally focal or travel histories were accurate was the algorithm able to accurately estimate the reproduction number under control, Rc. Applying this approach to data from Eswatini indicated that inferences of Rc and spatiotemporal patterns therein depend upon the choice of data types and assumptions about travel-history data. CONCLUSIONS: These results suggest that transmission network inferences made with routine malaria surveillance data should be interpreted with caution.
Subject(s)
Malaria, Falciparum , Malaria , Disease Outbreaks , Humans , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum , ReproductionABSTRACT
As our understanding of volitional motor function increases, it is clear that complex movements are the result of the interactions of multiple cortical regions rather than just the output properties of primary motor cortex. However, our understanding of the interactions among these regions is limited. In this study, we used the activity-dependent stimulation (ADS) technique to determine the short/long-term effects on network activity and neuroplasticity of intracortical connections. ADS uses the intrinsic neural activity of one region to trigger stimulations in a separate region of the brain and can manipulate neuronal connectivity in vivo. Our aim was to compare single-unit neuronal activity within premotor cortex (rostral forelimb area, [RFA] in rats) in response to ADS (triggered from RFA) and randomly-generated stimulation in the somatosensory area (S1) within single sessions and across 21 consecutive days of stimulation. We examined firing rate and correlation between spikes and stimuli in chronically-implanted healthy ambulatory rats during spontaneous and evoked activity. At the end of the treatment, we evaluated changes of synaptophysin expression. Our results demonstrated the ability of ADS to modulate RFA firing properties and to promote synaptogenesis in S1, strengthening the idea that this Hebbian-inspired protocol can be used to modulate cortical connectivity.
Subject(s)
Motor Cortex , Animals , Electric Stimulation/methods , Forelimb/physiology , Motor Cortex/physiology , Neuronal Plasticity , Neurons/physiology , RatsABSTRACT
Intracortical microstimulation can be used successfully to modulate neuronal activity. Activity-dependent stimulation (ADS), in which action potentials recorded extracellularly from a single neuron are used to trigger stimulation at another cortical location (closed-loop), is an effective treatment for behavioral recovery after brain lesion, but the related neurophysiological changes are still not clear. Here, we investigated the ability of ADS and random stimulation (RS) to alter firing patterns of distant cortical locations. We recorded 591 neuronal units from 23 Long-Evan healthy anesthetized rats. Stimulation was delivered to either forelimb or barrel field somatosensory cortex, using either RS or ADS triggered from spikes recorded in the rostral forelimb area (RFA). Both RS and ADS stimulation protocols rapidly altered spike firing within RFA compared with no stimulation. We observed increase in firing rates and change of spike patterns. ADS was more effective than RS in increasing evoked spikes during the stimulation periods, by producing a reliable, progressive increase in stimulus-related activity over time and an increased coupling of the trigger channel with the network. These results are critical for understanding the efficacy of closed-loop electrical microstimulation protocols in altering activity patterns in interconnected brain networks, thus modulating cortical state and functional connectivity.
Subject(s)
Action Potentials/physiology , Motor Cortex/physiology , Nerve Net/physiology , Neurons/physiology , Somatosensory Cortex/physiology , Animals , Electric Stimulation/methods , Forelimb/innervation , Forelimb/physiology , Male , Microelectrodes , Rats , Rats, Long-EvansABSTRACT
The growing prevalence of deadly microbes with resistance to previously life-saving drug therapies is a dire threat to human health. Detection of low abundance pathogen sequences remains a challenge for metagenomic Next Generation Sequencing (NGS). We introduce FLASH (Finding Low Abundance Sequences by Hybridization), a next-generation CRISPR/Cas9 diagnostic method that takes advantage of the efficiency, specificity and flexibility of Cas9 to enrich for a programmed set of sequences. FLASH-NGS achieves up to 5 orders of magnitude of enrichment and sub-attomolar gene detection with minimal background. We provide an open-source software tool (FLASHit) for guide RNA design. Here we applied it to detection of antimicrobial resistance genes in respiratory fluid and dried blood spots, but FLASH-NGS is applicable to all areas that rely on multiplex PCR.
Subject(s)
Anti-Bacterial Agents/pharmacology , CRISPR-Cas Systems , Computational Biology/methods , Drug Resistance, Bacterial/drug effects , High-Throughput Nucleotide Sequencing/methods , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacterial Infections/diagnosis , Bacterial Infections/genetics , Bacterial Infections/prevention & control , Drug Resistance, Bacterial/genetics , Humans , Metagenomics/methods , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
BACKGROUND: Reactive case detection (RACD) is a widely practiced malaria elimination intervention whereby close contacts of index cases receive malaria testing to inform treatment and other interventions. However, the optimal diagnostic and operational approaches for this resource-intensive strategy are not clear. METHODS: We conducted a 3-year prospective national evaluation of RACD in Eswatini, a malaria elimination setting. Loop-mediated isothermal amplification (LAMP) was compared to traditional rapid diagnostic testing (RDT) for the improved detection of infections and for hotspots (RACD events yielding ≥1 additional infection). The potential for index case-, RACD-, and individual-level factors to improve efficiencies was also evaluated. RESULTS: Among 377 RACD events, 10 890 participants residing within 500 m of index cases were tested. Compared to RDT, LAMP provided a 3-fold and 2.3-fold higher yield to detect infections (1.7% vs 0.6%) and hotspots (29.7% vs 12.7%), respectively. Hotspot detection improved with ≥80% target population coverage and response times within 7 days. Proximity to the index case was associated with a dose-dependent increased infection risk (up to 4-fold). Individual-, index case-, and other RACD-level factors were considered but the simple approach of restricting RACD to a 200-m radius maximized yield and efficiency. CONCLUSIONS: We present the first large-scale national evaluation of optimal RACD approaches from a malaria elimination setting. To inform delivery of antimalarial drugs or other interventions, RACD, when conducted, should utilize more sensitive diagnostics and clear context-specific operational parameters. Future studies of RACD's impact on transmission may still be needed.
Subject(s)
Malaria , Nucleic Acid Amplification Techniques , Eswatini , Humans , Malaria/diagnosis , Malaria/epidemiology , Molecular Diagnostic Techniques , Prospective StudiesABSTRACT
BACKGROUND: Current methods to classify local and imported malaria infections depend primarily on patient travel history, which can have limited accuracy. Genotyping has been investigated as a complementary approach to track the spread of malaria and identify the origin of imported infections. METHODS: An extended panel of 26 microsatellites (16 new microsatellites) for Plasmodium falciparum was evaluated in 602 imported infections from 26 sub-Saharan African countries to the Jiangsu Province of People's Republic of China. The potential of the 26 microsatellite markers to assign imported parasites to their geographic origin was assessed using a Bayesian method with Markov Chain Monte Carlo (MCMC) as implemented in the program Smoothed and Continuous Assignments (SCAT) with a modification to incorporate haploid genotype data. RESULTS: The newly designed microsatellites were polymorphic and are not in linkage disequilibrium with the existing microsatellites, supporting previous findings of high rate of recombination in sub-Saharan Africa. Consistent with epidemiology inferred from patients' travel history, no evidence for local transmission was found; nearly all genetically related infections were identified in people who travelled to the same country near the same time. The smoothing assignment method assigned imported cases to their likely geographic origin with an accuracy (Angola: 59%; Nigeria: 51%; Equatorial Guinea: 40%) higher than would be achieved at random, reaching statistical significance for Angola and Equatorial Guinea. CONCLUSIONS: Genotyping using an extended microsatellite panel is valuable for malaria case classification and programme evaluation in an elimination setting. A Bayesian method for assigning geographic origin of mammals based on genetic data was adapted for malaria and showed potential for identification of the origin of imported infections.
Subject(s)
Communicable Diseases, Imported/transmission , Malaria, Falciparum/transmission , Plasmodium falciparum/isolation & purification , Travel , Angola , China , Equatorial Guinea , Humans , Microsatellite Repeats , NigeriaABSTRACT
BACKGROUND: Southern Province, Zambia has experienced a dramatic decline in Plasmodium falciparum malaria transmission in the past decade and is targeted for elimination. Zambia's National Malaria Elimination Program recommends reactive case detection (RCD) within 140 m of index households to enhance surveillance and eliminate remaining transmission foci. METHODS: To evaluate whether RCD captures local transmission, we genotyped 26 microsatellites from 106 samples collected from index (n = 27) and secondary (n = 79) cases detected through RCD in the Macha Hospital catchment area between January 2015 and April 2016. RESULTS: Participants from the same RCD event harbored more genetically related parasites than those from different RCD events, suggesting that RCD captures, at least in part, infections related through local transmission. Related parasites clustered in space and time, up to at least 250 m from index households. Spatial analysis identified a putative focal transmission hotspot. CONCLUSIONS: The current RCD strategy detects focal transmission events, although programmatic guidelines to screen within 140 m of index households may fail to capture all secondary cases. This study highlights the utility of parasite genetic data in assessing programmatic interventions, and similar approaches may be useful to malaria elimination programs seeking to tailor intervention strategies to the underlying transmission epidemiology.
Subject(s)
Malaria, Falciparum/transmission , Plasmodium falciparum/genetics , Disease Eradication/methods , Genotyping Techniques , Humans , Malaria, Falciparum/parasitology , Microsatellite Repeats/genetics , Population Surveillance , Spatio-Temporal Analysis , Zambia/epidemiologyABSTRACT
BACKGROUND: To better understand transmission dynamics, we characterized Plasmodium falciparum genetic diversity in Eswatini, where transmission is low and sustained by importation. METHODS: Twenty-six P. falciparum microsatellites were genotyped in 66% of confirmed cases (2014-2016; N = 582). Population and within-host diversity were used to characterize differences between imported and locally acquired infections. Logistic regression was used to assess the added value of diversity metrics to classify imported and local infections beyond epidemiology data alone. RESULTS: Parasite population in Eswatini was highly diverse (expected heterozygosity [HE] = 0.75) and complex: 67% polyclonal infections, mean multiplicity of infection (MOI) 2.2, and mean within-host infection fixation index (FWS) 0.84. Imported cases had comparable diversity to local cases but exhibited higher MOI (2.4 vs 2.0; P = .004) and lower mean FWS (0.82 vs 0.85; P = .03). Addition of MOI and FWS to multivariate analyses did not increase discrimination between imported and local infections. CONCLUSIONS: In contrast to the common perception that P. falciparum diversity declines with decreasing transmission intensity, Eswatini isolates exhibited high parasite diversity consistent with high rates of malaria importation and limited local transmission. Estimates of malaria transmission intensity from genetic data need to consider the effect of importation, especially as countries near elimination.
Subject(s)
Communicable Diseases, Imported/virology , DNA, Protozoan/genetics , Genome, Protozoan/genetics , Malaria, Falciparum/virology , Plasmodium falciparum/genetics , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , DNA, Protozoan/isolation & purification , Epidemiological Monitoring , Eswatini/epidemiology , Genetic Variation , Humans , Incidence , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Microsatellite Repeats , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicityABSTRACT
Malaria rapid diagnostic tests (RDTs) primarily detect Plasmodium falciparum antigen histidine-rich protein 2 (HRP2) and the malaria-conserved antigen lactate dehydrogenase (LDH) for P. vivax and other malaria species. The performance of RDTs and their utility is dependent on circulating antigen concentration distributions in infected individuals in a population in which malaria is endemic and on the limit of detection of the RDT for the antigens. A multiplexed immunoassay for the quantification of HRP2, P. vivax LDH, and all-malaria LDH (pan LDH) was developed to accurately measure circulating antigen concentration and antigen distribution in a population with endemic malaria. The assay also measures C-reactive protein (CRP) levels as an indicator of inflammation. Validation was conducted with clinical specimens from 397 asymptomatic donors from Myanmar and Uganda, confirmed by PCR for infection, and from participants in induced blood-stage malaria challenge studies. The assay lower limits of detection for HRP2, pan LDH, P. vivax LDH, and CRP were 0.2 pg/ml, 9.3 pg/ml, 1.5 pg/ml, and 26.6 ng/ml, respectively. At thresholds for HRP2, pan LDH, and P. vivax LDH of 2.3 pg/ml, 47.8 pg/ml, and 75.1 pg/ml, respectively, and a specificity ≥98.5%, the sensitivities for ultrasensitive PCR-confirmed infections were 93.4%, 84.9%, and 48.9%, respectively. Plasmodium LDH (pLDH) concentration, in contrast to that of HRP2, correlated closely with parasite density. CRP levels were moderately higher in P. falciparum infections with confirmed antigenemia versus those in clinical specimens with no antigen. The 4-plex array is a sensitive tool for quantifying diagnostic antigens in malaria infections and supporting the evaluation of new ultrasensitive RDTs.
Subject(s)
Antigens, Protozoan/blood , Asymptomatic Infections , C-Reactive Protein/analysis , Immunoassay/methods , Malaria/blood , Malaria/diagnosis , Adult , Asymptomatic Infections/epidemiology , Child , Child, Preschool , Diagnostic Tests, Routine , Endemic Diseases , Humans , Infant , L-Lactate Dehydrogenase/blood , Malaria/epidemiology , Myanmar/epidemiology , Plasmodium/immunology , Protozoan Proteins/blood , Sensitivity and Specificity , Uganda/epidemiologyABSTRACT
Background: The World Health Organization recommendation on the use of a single low dose of primaquine (SLD-PQ) to reduce Plasmodium falciparum malaria transmission requires more safety data. Methods: We conducted an open-label, nonrandomized, dose-adjustment trial of the safety of 3 single doses of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient adult males in Mali, followed by an assessment of safety in G6PD-deficient boys aged 11-17 years and those aged 5-10 years, including G6PD-normal control groups. The primary outcome was the greatest within-person percentage drop in hemoglobin concentration within 10 days after treatment. Results: Fifty-one participants were included in analysis. G6PD-deficient adult males received 0.40, 0.45, or 0.50 mg/kg of SLD-PQ. G6PD-deficient boys received 0.40 mg/kg of SLD-PQ. There was no evidence of symptomatic hemolysis, and adverse events considered related to study drug (n = 4) were mild. The mean largest within-person percentage change in hemoglobin level between days 0 and 10 was -9.7% (95% confidence interval [CI], -13.5% to -5.90%) in G6PD-deficient adults receiving 0.50 mg/kg of SLD-PQ, -11.5% (95% CI, -16.1% to -6.96%) in G6PD-deficient boys aged 11-17 years, and -9.61% (95% CI, -7.59% to -13.9%) in G6PD-deficient boys aged 5-10 years. The lowest hemoglobin concentration at any point during the study was 92 g/L. Conclusion: SLD-PQ doses between 0.40 and 0.50 mg/kg were well tolerated in G6PD-deficient males in Mali. Clinical Trials Registration: NCT02535767.
Subject(s)
Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase Deficiency/metabolism , Primaquine/administration & dosage , Primaquine/adverse effects , Adolescent , Adult , Aging , Antimalarials/administration & dosage , Antimalarials/adverse effects , Child , Child, Preschool , Dose-Response Relationship, Drug , Hemoglobins , Humans , Male , Mali , Middle Aged , Young AdultABSTRACT
The development of vaccines against malaria and serodiagnostic tests for detecting recent exposure requires tools for antigen discovery and suitable animal models. The protein microarray is a high-throughput, sample sparing technique, with applications in infectious disease research, clinical diagnostics, epidemiology, and vaccine development. We recently demonstrated Qdot-based indirect immunofluorescence together with portable optical imager ArrayCAM using single isotype detection could replicate data using the conventional laser confocal scanner system. We developed a multiplexing protocol for simultaneous detection of IgG, IgA, and IgM and compared samples from a controlled human malaria infection model with those from controlled malaria infections of Aotus nancymaae, a widely used non-human primate model of human malaria. IgG profiles showed the highest concordance in number of reactive antigens; thus, of the 139 antigens recognized by human IgG antibody, 111 were also recognized by Aotus monkeys. Interestingly, IgA profiles were largely non-overlapping. Finally, on the path toward wider deployment of the portable platform, we show excellent correlations between array data obtained in five independent laboratories around the United States using the multiplexing protocol (R2 : 0.60-0.92). This study supports the use of this platform for wider deployment, particularly in endemic areas where such a tool will have the greatest impact on global human health.
Subject(s)
Immunoassay/methods , Immunoglobulin G/analysis , Malaria, Falciparum/diagnosis , Protein Array Analysis/methods , Proteome/analysis , Animals , Aotidae , Fluorescent Antibody Technique, Indirect , Humans , Immunoglobulin A/analysis , Immunoglobulin M/analysis , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Quantum DotsABSTRACT
As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.
Subject(s)
Gene Frequency/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Population Surveillance/methods , Humans , Plasmodium falciparum/classification , Risk Assessment/methods , Risk Factors , Uganda/epidemiologyABSTRACT
BACKGROUND: The detection of submicroscopic infections in low prevalence settings has become an increasingly important challenge for malaria elimination strategies. The current field rapid diagnostic tests (RDTs) for Plasmodium falciparum malaria are inadequate to detect low-density infections. Therefore, there is a need to develop more sensitive field diagnostic tools. In parallel, a highly sensitive laboratory reference assay will be essential to evaluate new diagnostic tools. Recently, the highly sensitive Alere™ Malaria Ag P.f ELISA (HS ELISA) was developed to detect P. falciparum histidine-rich protein 2 (HRP2) in clinical whole blood specimens. In this study, the analytical and clinical performance of the HS ELISA was determined using recombinant P. falciparum HRP2, P. falciparum native culture parasites, and archived highly pedigreed clinical whole blood specimens from Karen village, Myanmar and Nagongera, Uganda. RESULTS: The HS ELISA has an analytical sensitivity of less than 25 pg/mL and shows strong specificity for P. falciparum HRP2 when tested against P. falciparum native culture strains with pfhrp2 and pfhrp3 gene deletions. Additionally, the Z'-factor statistic of 0.862 indicates the HS ELISA as an excellent, reproducible assay, and the coefficients of variation for inter- and intra-plate testing, 11.76% and 2.51%, were acceptable. Against clinical whole blood specimens with concordant microscopic and PCR results, the HS ELISA showed 100% (95% CI 96.4-100) diagnostic sensitivity and 97.9% (95% CI 94.8-99.4) diagnostic specificity. For P. falciparum positive specimens with HRP2 concentrations below 400 pg/mL, the sensitivity and specificity were 100% (95% CI 88.4-100) and 88.9% (95% CI 70.8-97.6), respectively. The overall sensitivity and specificity for all 352 samples were 100% (CI 95% 96-100%) and 97.3% (CI 95% 94-99%). CONCLUSIONS: The HS ELISA is a robust and reproducible assay. The findings suggest that the HS ELISA may be a useful tool as an affordable reference assay for new ultra-sensitive HRP2-based RDTs.
Subject(s)
Antigens, Protozoan/blood , Diagnostic Tests, Routine/methods , Enzyme-Linked Immunosorbent Assay/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/blood , Humans , Myanmar , Sensitivity and Specificity , UgandaABSTRACT
The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochete's rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.
Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/metabolism , Gene Expression Regulation, Bacterial/physiology , Lipoproteins/metabolism , Membrane Proteins/metabolism , Bacterial Proteins/genetics , Borrelia burgdorferi/genetics , Epitopes , Escherichia coli/metabolism , Gene Library , Lipoproteins/genetics , Mass Spectrometry , Membrane Proteins/genetics , Protein TransportABSTRACT
Background: The performance of Plasmodium falciparum-specific histidine-rich protein 2-based rapid diagnostic tests (RDTs) to evaluate suspected malaria in low-endemicity settings has not been well characterized. Methods: Using dried blood spot samples from patients with suspected malaria at 37 health facilities from 2012 to 2014 in the low-endemicity country of Swaziland, we investigated the diagnostic accuracy of histidine-rich protein 2-based RDTs using qualitative polymerase chain reaction (PCR) (nested PCR targeting the cytochrome b gene) and quantitative PCR as reference standards. To explore reasons for false-negative and/or false-positive results, we used pfhrp2/3-specific PCR and logistic regression analyses of potentially associated epidemiological factors. Results: From 1353 patients, 93.0% of RDT-positive (n = 185) and 31.2% of RDT-negative samples (n = 340) were available and selected for testing. Compared with nested PCR, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of RDTs were 51.7%, 94.1%, 67.3%, and 89.1%, respectively. After exclusion of samples with parasite densities <100/µL, which accounted for 75.7% of false-negative results and 33.3% of PCR-detectable infections, the sensitivity, specificity, PPV, and NPV were 78.8%, 93.7%, 62.3%, and 97.1%. Deletions of pfhrp2 were not detected. False-positivity was more likely during the second year and was not associated with demographics, recent malaria, health facility testing characteristics, or potential DNA degradation. Conclusions: In the low-transmission setting of Swaziland, we demonstrated low sensitivity of RDT for malaria diagnosis, owing to an unexpectedly high proportion of low-density infection among symptomatic subjects. The PPV was also low, requiring further investigation. A more accurate point-of-care diagnostic may be needed to support malaria elimination efforts.
Subject(s)
Chromatography, Affinity/methods , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Eswatini , Humans , Plasmodium falciparum , Predictive Value of Tests , Prospective Studies , Sensitivity and SpecificityABSTRACT
Malaria parasite genetic data can provide insight into parasite phenotypes, evolution, and transmission. However, estimating key parameters such as allele frequencies, multiplicity of infection (MOI), and within-host relatedness from genetic data has been challenging, particularly in the presence of multiple related coinfecting strains. Existing methods often rely on single nucleotide polymorphism (SNP) data and do not account for within-host relatedness. In this study, we introduce a Bayesian approach called MOIRE (Multiplicity Of Infection and allele frequency REcovery), designed to estimate allele frequencies, MOI, and within-host relatedness from genetic data subject to experimental error. Importantly, MOIRE is flexible in accommodating both polyallelic and SNP data, making it adaptable to diverse genotyping panels. We also introduce a novel metric, the effective MOI (eMOI), which integrates MOI and within-host relatedness, providing a robust and interpretable measure of genetic diversity. Using extensive simulations and real-world data from a malaria study in Namibia, we demonstrate the superior performance of MOIRE over naive estimation methods, accurately estimating MOI up to 7 with moderate sized panels of diverse loci (e.g. microhaplotypes). MOIRE also revealed substantial heterogeneity in population mean MOI and mean relatedness across health districts in Namibia, suggesting detectable differences in transmission dynamics. Notably, eMOI emerges as a portable metric of within-host diversity, facilitating meaningful comparisons across settings, even when allele frequencies or genotyping panels are different. MOIRE represents an important addition to the analysis toolkit for malaria population dynamics. Compared to existing software, MOIRE enhances the accuracy of parameter estimation and enables more comprehensive insights into within-host diversity and population structure. Additionally, MOIRE's adaptability to diverse data sources and potential for future improvements make it a valuable asset for research on malaria and other organisms, such as other eukaryotic pathogens. MOIRE is available as an R package at https://eppicenter.github.io/moire/.