Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 19(9)2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30223587

ABSTRACT

Recent times have seen an increasing move towards harnessing the health-promoting benefits of food and dietary constituents while providing scientific evidence to substantiate their claims. In particular, the potential for bioactive protein hydrolysates and peptides to enhance health in conjunction with conventional pharmaceutical therapy is being investigated. Dairy-derived proteins have been shown to contain bioactive peptide sequences with various purported health benefits, with effects ranging from the digestive system to cardiovascular circulation, the immune system and the central nervous system. Interestingly, the ability of dairy proteins to modulate metabolism and appetite has recently been reported. The ghrelin receptor (GHSR-1a) is a G-protein coupled receptor which plays a key role in the regulation of food intake. Pharmacological manipulation of the growth hormone secretagogue receptor-type 1a (GHSR-1a) receptor has therefore received a lot of attention as a strategy to combat disorders of appetite and body weight, including age-related malnutrition and the progressive muscle wasting syndrome known as cachexia. In this study, a milk protein-derivative is shown to increase GHSR-1a-mediated intracellular calcium signalling in a concentration-dependent manner in vitro. Significant increases in calcium mobilisation were also observed in a cultured neuronal cell line heterologously expressing the GHS-R1a. In addition, both additive and synergistic effects were observed following co-exposure of GHSR-1a to both the hydrolysate and ghrelin. Subsequent in vivo studies monitored standard chow intake in healthy male and female Sprague-Dawley rats after dosing with the casein hydrolysate (CasHyd). Furthermore, the provision of gastro-protected oral delivery to the bioactive in vivo may aid in the progression of in vitro efficacy to in vivo functionality. In summary, this study reports a ghrelin-stimulating bioactive peptide mixture (CasHyd) with potent effects in vitro. It also provides novel and valuable translational data supporting the potential role of CasHyd as an appetite-enhancing bioactive. Further mechanistic studies are required in order to confirm efficacy as a ghrelinergic bioactive in susceptible population groups.


Subject(s)
Caseins/metabolism , Eating , Gene Expression , Receptors, Ghrelin/genetics , Animals , Calcium/metabolism , Caseins/chemistry , Cell Line , Chromatography, High Pressure Liquid , Enzyme Activation , Enzyme Stability , Female , Ghrelin/metabolism , Humans , Hydrogen-Ion Concentration , Male , Molecular Imaging/methods , Rats , Receptors, Ghrelin/metabolism
2.
Nutr Cancer ; 68(7): 1234-46, 2016 10.
Article in English | MEDLINE | ID: mdl-27472445

ABSTRACT

Buttermilk is a rich source of milk fat globule membrane (MFGM) fragments assembled from bioactive polar lipids and proteins that originate from bovine mammary epithelial cells. The objective of this study was to examine growth-modulatory effects of experimental buttermilks varying in sphingolipid and phospholipid composition on a colon cancer cell line of human origin. Buttermilks were prepared from washed and unwashed cream using gravity or centrifugation. Compositional analysis showed that sphingomyelin (SM) (10.4-29.5%) and lactosylceramide (LacCer) (1.2-44.3%) were the predominant sphingolipids detected. Experimental samples inhibited in vitro growth of SW480 colon cancer cells in a dose-dependent manner. Antiproliferative activity was selective toward cancer cells. A fraction enriched in LacCer (44.3%), obtained by microfiltration induced caspase-independent cell death as evident by phosphatidylserine externalization, increased percentage of degraded DNA, and loss of mitochondrial membrane potential in SW480 cells. This fraction downregulated growth-signaling pathways mediated by ß-catenin, phosphorylated Akt (serine/threonine-specific protein kinase), ERK1/2 (extracellular signal-regulated kinase), and c-myc. This study is to our knowledge the first to screen buttermilk samples that vary in polar lipid composition for antiproliferative activity in vitro.


Subject(s)
Buttermilk , Colonic Neoplasms/prevention & control , Down-Regulation , Functional Food , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Wnt Signaling Pathway , Buttermilk/analysis , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell Survival , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dairying , Food Handling , Functional Food/analysis , Humans , Membrane Potential, Mitochondrial , Phospholipids/analysis , Phospholipids/metabolism , Phosphorylation , Pilot Projects , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Sphingolipids/analysis , Sphingolipids/metabolism
3.
J Nutr ; 143(7): 1109-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23658425

ABSTRACT

Whey protein hydrolysates (WPHs) represent novel antidiabetic agents that affect glycemia in animals and humans, but little is known about their insulinotropic effects. The effects of a WPH were analyzed in vitro on acute glucose-induced insulin secretion in pancreatic BRIN-BD11 ß cells. WPH permeability across Caco-2 cell monolayers was determined in a 2-tiered intestinal model. WPH effects on insulin resistance were studied in vivo following an 8-wk oral ingestion (100 mg/kg body weight) by ob/ob (OB-WPH) and wild-type mice (WT-WPH) compared with vehicle control (OB and WT groups) using a 2 × 2 factorial design, genotype × treatment. BRIN-BD11 cells showed a robust and reproducible dose-dependent insulinotropic effect of WPH (from 0.01 to 5.00 g/L). WPH bioactive constituents were permeable across Caco-2 cell monolayers. In the OB-WPH and WT-WPH groups, WPH administration improved glucose clearance after a glucose challenge (2 g/kg body weight), as indicated by differences in the area under curves (AUCs) (P ≤ 0.05). The basal plasma glucose concentration was not affected by WPH treatment in either genotype. The plasma insulin concentration was lower in the OB-WPH than in the OB group (P ≤ 0.005) but was similar between the WT and WT-WPH groups; the interaction genotype × treatment was significant (P ≤ 0.005). Insulin release from pancreatic islets isolated from the OB-WPH group was greater (P ≤ 0.005) than that from the OB group but did not differ between the WT-WPH and WT groups; the interaction genotype × treatment was not significant. In conclusion, an 8-wk oral administration of WPH improved blood glucose clearance, reduced hyperinsulinemia, and restored the pancreatic islet capacity to secrete insulin in response to glucose in ob/ob mice. Hence, it may be useful in diabetes management.


Subject(s)
Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Milk Proteins/pharmacology , Protein Hydrolysates/pharmacology , Animals , Biomarkers/blood , Blood Glucose/drug effects , Caco-2 Cells , Chromatography, High Pressure Liquid , Glucose Tolerance Test , Humans , Hyperinsulinism/drug therapy , Insulin/blood , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/metabolism , Intestinal Mucosa/metabolism , Intestines/drug effects , Mice , Mice, Obese , Whey Proteins
4.
Int J Biol Macromol ; 240: 124459, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37072064

ABSTRACT

Hyaluronic acid (HA) is a naturally occurring mucopolysaccharide that, due to its inherent bioactivity and extracellular matrix-like structure, has the potential to be utilised extensively in tissue engineering. However, this glycosaminoglycan lacks the properties required for cellular adhesion and photo-crosslinking by UV light, which significantly hinders this polymers applicability. This research presents a method for modifying hyaluronic acid via thiolation and methacrylation to generate a novel photo-crosslinkable polymer with improved physicochemical properties, biocompatibility and the potential to customize biodegradability according to the ratio of monomers used. A decrease in stiffness proportional to increasing thiol concentration was observed when testing the compressive strength of hydrogels. Conversely, it was noted that the storage moduli of hydrogels increased proportionally to thiol concentration indicating a greater degree of cross-linking with the addition of thiol. The addition of thiol to HA increased the biocompatibility of the material in both neuronal and glial cell lines and improved the degradability of methacrylated HA. Due to the enhanced physicochemical properties and biocompatibility imparted by the introduction of thiolated HA, this novel hydrogel system could have numerous bioengineering applications.


Subject(s)
Hyaluronic Acid , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Click Chemistry/methods , Tissue Engineering/methods , Glycosaminoglycans , Sulfhydryl Compounds/chemistry
5.
Mol Nutr Food Res ; 60(11): 2421-2432, 2016 11.
Article in English | MEDLINE | ID: mdl-27390025

ABSTRACT

SCOPE: Activation of the nod-like receptor protein 3 (NLRP3) inflammasome is required for IL-1ß release and is a key component of obesity-induced inflammation and insulin resistance. This study hypothesized that supplementation with a casein hydrolysate (CH) would attenuate NLRP3 inflammasome mediated IL-1ß secretion in adipose tissue (AT) and improve obesity-induced insulin resistance. METHODS AND RESULTS: J774.2 macrophages were LPS primed (10 ng/mL) and stimulated with adenosine triphosphate (5 mM) to assess NLRP3 inflammasome activity. Pretreatment with CH (1 mg/mL; 48 h) reduced caspase-1 activity and decreased IL-1ß secretion from J774.2 macrophages in vitro. 3T3-L1 adipocytes cultured with conditioned media from CH-pretreated J774.2 macrophages demonstrated increased phosphorylated (p)AKT expression and improved insulin sensitivity. C57BL/6JOLaHsd mice were fed chow or high fat diet (HFD) for 12 wk ± CH resuspended in water (0.5% w/v). CH supplementation improved glucose tolerance in HFD-fed mice as determined by glucose tolerance test. CH supplementation increased insulin-stimulated pAKT protein levels in AT, liver, and muscle after HFD. Cytokine secretion was measured from AT and isolated bone marrow macrophages cultured ex vivo. CH supplementation attenuated IL-1ß, tumor necrosis factor alpha (TNF-α) and IL-6 secretion from AT and IL-1ß, IL-18, and TNF-α from bone marrow macrophages following adenosine triphosphate stimulation ex vivo. CONCLUSION: This novel CH partially protects mice against obesity-induced hyperglycemia coincident with attenuated IL-1ß secretion and improved insulin signaling.


Subject(s)
Adipose Tissue/metabolism , Caseins/pharmacology , Inflammasomes/metabolism , Obesity/metabolism , 3T3-L1 Cells , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 2/diet therapy , Diet, High-Fat/adverse effects , Hyperglycemia/metabolism , Inflammation/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
6.
J Agric Food Chem ; 63(10): 2708-14, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25716093

ABSTRACT

The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 µM EDTA (for 30 kDa-R the value was 8.7 µM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (P<0.05) improved in dispersions of hydrolysate fraction solutions (10 g protein L(-1)). Total iron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.


Subject(s)
Iron/chemistry , Milk Proteins/chemistry , Chelating Agents/chemistry , Digestion , Ferrous Compounds/chemistry , Humans , Iron/metabolism , Milk Proteins/metabolism , Models, Biological , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Solubility , Whey Proteins
7.
Food Sci Nutr ; 2(6): 712-23, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25493190

ABSTRACT

Bioactive milk peptides are reported to illicit a range of physiological benefits and have been proposed as potential functional food ingredients. The objective of this study was to characterize the anti-inflammatory properties of sodium caseinate (NaCAS), its enzyme hydrolysate (EH) and peptide-enriched fractions (5 kDa retentate [R], 1 kDaR and 1 kDa permeate [P]), both in vitro using a Caco-2 cell line, and also ex vivo using a porcine colonic tissue explant system. Caco-2 cells were stimulated with tumour necrosis factor alpha (TNFα) and co-treated with casein hydrolysates for 24 h. Following this, interleukin (IL)-8 concentrations in the supernatant were measured using enzyme-linked immunosorbent assay. Porcine colonic tissue was stimulated with lipopolysaccharide and co-treated with casein hydrolysates for 3 h. The expression of a panel of inflammatory cytokines was measured using qPCR. While dexamethasone reduced the IL-8 concentration by 41.6%, the 1 kDaR and 1 kDaP fractions reduced IL-8 by 68.7% and 66.1%, respectively, relative to TNFα-stimulated Caco-2 cells (P < 0.05). In the ex vivo system, only the 1 kDaR fraction elicited a decrease inIL1-α,IL1-ß,IL-8,TGF-ß andIL-10 expression (P < 0.05). This study provides evidence that the bioactive peptides present in the 1 kDaR fraction of the NaCAS hydrolysate possess anti-inflammatory properties in vitro and ex vivo. Further in vivo analysis of the anti-inflammatory properties of the 1 kDaR is proposed.

9.
J Nutr ; 134(4): 980S-8S, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15051858

ABSTRACT

Hypertension is the major controllable risk factor associated with cardiovascular disease (CVD) events such as myocardial infarction, stroke, heart failure, and end-stage diabetes. A 5 mm Hg decrease in blood pressure has been equated with approximately 16% decrease in CVD. In the U.S. alone current annual antihypertensive drug costs are approximately dollars 15 billion. The renin-angiotensin-aldosterone system is a target for blood pressure control. Cleavage of angiotensinogen by renin produces angiotensin I which is subsequently hydrolyzed by angiotensin-I-converting enzyme (ACE) to angiotensin II (a potent vasoconstrictor). Various side effects are associated with the use of ACE inhibitory drugs in the control of blood pressure including hypotension, increased potassium levels, reduced renal function, cough, angioedema, skin rashes, and fetal abnormalities. Milk proteins, both caseins and whey proteins, are a rich source of ACE inhibitory peptides. Several studies in spontaneously hypertensive rats show that these casokinins and lactokinins can significantly reduce blood pressure. Furthermore, a limited number of human studies have associated milk protein-derived peptides with statistically significant hypotensive effects (i.e., lower systolic and diastolic pressures). The advent of effective milk protein based functional food ingredients/nutraceuticals for the prevention/control of blood pressure therefore has the potential to significantly reduce global healthcare cost.


Subject(s)
Antihypertensive Agents , Milk Proteins/chemistry , Peptides/pharmacology , Animals , Caseins/chemistry , Caseins/metabolism , Humans , Kinins , Milk Proteins/metabolism , Natriuretic Peptides , Neprilysin , Nitric Oxide , Peptides/metabolism , Rats , Renin-Angiotensin System
SELECTION OF CITATIONS
SEARCH DETAIL