Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nature ; 568(7750): 108-111, 2019 04.
Article in English | MEDLINE | ID: mdl-30918404

ABSTRACT

Ethane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps1-3, and through ethane-dependent sulfate reduction in slurries4-7. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown8. Here we describe ethane-oxidizing archaea that were obtained by specific enrichment over ten years, and analyse these archaea using phylogeny-based fluorescence analyses, proteogenomics and metabolite studies. The co-culture, which oxidized ethane completely while reducing sulfate to sulfide, was dominated by an archaeon that we name 'Candidatus Argoarchaeum ethanivorans'; other members were sulfate-reducing Deltaproteobacteria. The genome of Ca. Argoarchaeum contains all of the genes that are necessary for a functional methyl-coenzyme M reductase, and all subunits were detected in protein extracts. Accordingly, ethyl-coenzyme M (ethyl-CoM) was identified as an intermediate by liquid chromatography-tandem mass spectrometry. This indicated that Ca. Argoarchaeum initiates ethane oxidation by ethyl-CoM formation, analogous to the recently described butane activation by 'Candidatus Syntrophoarchaeum'9. Proteogenomics further suggests that oxidation of intermediary acetyl-CoA to CO2 occurs through the oxidative Wood-Ljungdahl pathway. The identification of an archaeon that uses ethane (C2H6) fills a gap in our knowledge of microorganisms that specifically oxidize members of the homologous alkane series (CnH2n+2) without oxygen. Detection of phylogenetic and functional gene markers related to those of Ca. Argoarchaeum at deep-sea gas seeps10-12 suggests that archaea that are able to oxidize ethane through ethyl-CoM are widespread members of the local communities fostered by venting gaseous alkanes around these seeps.


Subject(s)
Aquatic Organisms/metabolism , Archaea/metabolism , Ethane/metabolism , Anaerobiosis , Archaea/classification , Archaea/enzymology , Archaea/genetics , Deltaproteobacteria/metabolism , Ethane/chemistry , Gases/chemistry , Gases/metabolism , Gulf of Mexico , Methane/biosynthesis , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Sulfides/metabolism
2.
J Environ Sci (China) ; 146: 283-297, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969457

ABSTRACT

The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Microbiota , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Arctic Regions , Petroleum/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Archaea/metabolism , Archaea/classification , Archaea/genetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Biodiversity
3.
Proc Natl Acad Sci U S A ; 117(19): 10414-10421, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32350143

ABSTRACT

The rise of oxygen on the early Earth about 2.4 billion years ago reorganized the redox cycle of harmful metal(loids), including that of arsenic, which doubtlessly imposed substantial barriers to the physiology and diversification of life. Evaluating the adaptive biological responses to these environmental challenges is inherently difficult because of the paucity of fossil records. Here we applied molecular clock analyses to 13 gene families participating in principal pathways of arsenic resistance and cycling, to explore the nature of early arsenic biogeocycles and decipher feedbacks associated with planetary oxygenation. Our results reveal the advent of nascent arsenic resistance systems under the anoxic environment predating the Great Oxidation Event (GOE), with the primary function of detoxifying reduced arsenic compounds that were abundant in Archean environments. To cope with the increased toxicity of oxidized arsenic species that occurred as oxygen built up in Earth's atmosphere, we found that parts of preexisting detoxification systems for trivalent arsenicals were merged with newly emerged pathways that originated via convergent evolution. Further expansion of arsenic resistance systems was made feasible by incorporation of oxygen-dependent enzymatic pathways into the detoxification network. These genetic innovations, together with adaptive responses to other redox-sensitive metals, provided organisms with novel mechanisms for adaption to changes in global biogeocycles that emerged as a consequence of the GOE.


Subject(s)
Adaptation, Biological/genetics , Arsenic/metabolism , Oxygen/metabolism , Adaptation, Biological/physiology , Atmosphere , Biological Evolution , Earth, Planet , Evolution, Planetary , Fossils , Oxidation-Reduction
4.
Environ Microbiol ; 24(4): 1964-1976, 2022 04.
Article in English | MEDLINE | ID: mdl-35257474

ABSTRACT

The metabolic potential of the sulfate-reducing bacterium Desulfosarcina sp. strain BuS5, currently the only pure culture able to oxidize the volatile alkanes propane and butane without oxygen, was investigated via genomics, proteomics and physiology assays. Complete genome sequencing revealed that strain BuS5 encodes a single alkyl-succinate synthase, an enzyme which apparently initiates oxidation of both propane and butane. The formed alkyl-succinates are oxidized to CO2 via beta oxidation and the oxidative Wood-Ljungdahl pathways as shown by proteogenomics analyses. Strain BuS5 conserves energy via the canonical sulfate reduction pathway and electron bifurcation. An ability to utilize long-chain fatty acids, mannose and oligopeptides, suggested by automated annotation pipelines, was not supported by physiology assays and in-depth analyses of the corresponding genetic systems. Consistently, comparative genomics revealed a streamlined BuS5 genome with a remarkable paucity of catabolic modules. These results establish strain BuS5 as an exceptional metabolic specialist, able to grow only with propane and butane, for which we propose the name Desulfosarcina aeriophaga BuS5. This highly restrictive lifestyle, most likely the result of habitat-driven evolutionary gene loss, may provide D. aeriophaga BuS5 a competitive edge in sediments impacted by natural gas seeps. Etymology: Desulfosarcina aeriophaga, aério (Greek): gas; phágos (Greek): eater; D. aeriophaga: a gas eating or gas feeding Desulfosarcina.


Subject(s)
Alkanes , Proteome , Alkanes/metabolism , Anaerobiosis , Butanes/metabolism , Gases , Oxidation-Reduction , Phylogeny , Propane/metabolism , Proteome/metabolism , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism
5.
Environ Microbiol ; 24(2): 583-595, 2022 02.
Article in English | MEDLINE | ID: mdl-34190386

ABSTRACT

Carbon and hydrogen stable isotope effects associated with methane formation by the corrosive archaeon Methanobacterium strain IM1 were determined during growth with hydrogen and iron. Isotope analyses were complemented by structural, elemental and molecular composition analyses of corrosion crusts. During growth with H2 , strain IM1 formed methane with average δ13 C of -43.5‰ and δ2 H of -370‰. Corrosive growth led to methane more depleted in 13 C, with average δ13 C ranging from -56‰ to -64‰ during the early and the late growth phase respectively. The corresponding δ2 H were less impacted by the growth phase, with average values ranging from -316 to -329‰. The stable isotope fractionation factors, α 13 C CO 2 / CH 4 , were 1.026 and 1.042 for hydrogenotrophic and corrosive growth respectively. Corrosion crusts formed by strain IM1 have a domed structure, appeared electrically conductive and were composed of siderite, calcite and iron sulfide, the latter formed by precipitation of sulfide (from culture medium) with ferrous iron generated during corrosion. Strain IM1 cells were found attached to crust surfaces and encrusted deep inside crust domes. Our results may assist to diagnose methanogens-induced corrosion in the field and suggest that intrusion of sulfide in anoxic settings may stimulate corrosion by methanogenic archaea via formation of semiconductive crusts.


Subject(s)
Archaea , Euryarchaeota , Carbon Isotopes/analysis , Corrosion , Iron , Isotopes , Methane
6.
Nature ; 539(7629): 396-401, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27749816

ABSTRACT

The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C1-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding ß-oxidation enzymes, carbon monoxide dehydrogenase and reversible C1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.


Subject(s)
Archaea/metabolism , Butanes/metabolism , Mesna/chemistry , Mesna/metabolism , Alkylation , Anaerobiosis , Archaea/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Biocatalysis , Evolution, Molecular , Oxidation-Reduction , Sulfates/metabolism , Temperature
7.
Proc Natl Acad Sci U S A ; 116(14): 6653-6658, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30886103

ABSTRACT

Microbial anaerobic oxidation of hydrocarbons is a key process potentially involved in a myriad of geological and biochemical environments yet has remained notoriously difficult to identify and quantify in natural environments. We performed position-specific carbon isotope analysis of propane from cracking and incubation experiments. Anaerobic bacterial oxidation of propane leads to a pronounced and previously unidentified 13C enrichment in the central position of propane, which contrasts with the isotope signature associated with the thermogenic process. This distinctive signature allows the detection and quantification of anaerobic oxidation of hydrocarbons in diverse natural gas reservoirs and suggests that this process may be more widespread than previously thought. Position-specific isotope analysis can elucidate the fate of natural gas hydrocarbons and provide insight into a major but previously cryptic process controlling the biogeochemical cycling of globally significant greenhouse gases.


Subject(s)
Bacteria/metabolism , Natural Gas/microbiology , Propane/metabolism , Anaerobiosis/physiology , Carbon Isotopes/metabolism , Oxidation-Reduction
8.
Environ Microbiol ; 23(11): 6764-6776, 2021 11.
Article in English | MEDLINE | ID: mdl-34472201

ABSTRACT

Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.


Subject(s)
Pseudomonas putida , Isotopes , Metabolic Networks and Pathways , Pseudomonas putida/genetics , Spectrometry, Mass, Secondary Ion
9.
Environ Microbiol ; 22(9): 4057-4066, 2020 09.
Article in English | MEDLINE | ID: mdl-32783260

ABSTRACT

The aromatic hydrocarbon naphthalene, which occurs in coal and oil, can be degraded by aerobic or anaerobic microorganisms. A wide-spread electron acceptor for the latter is sulfate. Evidence for in situ naphthalene degradation stems in particular from the detection of 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate in oil field samples. Because such intermediates are usually not detected in laboratory cultures with high sulfate concentrations, one may suppose that conditions in reservoirs, such as sulfate limitation, trigger metabolite release. Indeed, if naphthalene-grown cells of marine sulfate-reducing Deltaproteobacteria (strains NaphS2, NaphS3 and NaphS6) were transferred to sulfate-free medium, they released 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate while still consuming naphthalene. With 2-naphthoate as initial substrate, cells produced [5,6,7,8]-tetrahydro-2-naphthoate and the hydrocarbon, naphthalene, indicating reversibility of the initial naphthalene-metabolizing reaction. The reactions in the absence of sulfate were not coupled to observable growth. Excretion of naphthalene-derived metabolites was also achieved in sulfate-rich medium upon addition of the protonophore carbonyl cyanide4-(trifluoromethoxy)phenylhydrazone or the ATPase inhibitor N,N'-dicyclohexylcarbodiimide. In conclusion, obstruction of electron flow and energy gain by sulfate limitation offers an explanation for the occurrence of naphthalene-derived metabolites in oil reservoirs, and provides a simple experimental tool for gaining insights into the anaerobic naphthalene oxidation pathway from an energetic perspective.


Subject(s)
Deltaproteobacteria/metabolism , Naphthalenes/metabolism , Seawater/microbiology , Sulfates/metabolism , Anaerobiosis , Biodegradation, Environmental , Culture Media/chemistry , Culture Media/metabolism , Fossil Fuels/analysis , Fossil Fuels/microbiology , Oxidation-Reduction , Sulfates/analysis
10.
Environ Sci Technol ; 50(6): 3091-100, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26855125

ABSTRACT

Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites.


Subject(s)
Environmental Pollutants/metabolism , Hydrogen/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Carbon Isotopes/analysis , Chemical Fractionation/methods , Deuterium/analysis , Environmental Pollutants/chemistry , Metabolic Networks and Pathways , Naphthalenes/metabolism , Nitrogen Isotopes/analysis , Polycyclic Aromatic Hydrocarbons/chemistry
11.
Environ Microbiol ; 16(1): 130-40, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24028539

ABSTRACT

The anaerobic degradation of propane and butane is typically initiated by activation via addition to fumarate. Here we investigated the mechanism of activation under sulfate-reducing conditions by one pure culture (strain BuS5) and three enrichment cultures employing stable isotope analysis. Stable isotope fractionation was compared for cultures incubated with or without substrate diffusion limitation. Bulk enrichment factors were significantly higher in mixed vs. static incubations. Two dimensional factors, given by the correlation of stable isotope fractionation of both carbon and hydrogen at their reactive positions (Lambda reactive position, Λrp), were compared to analyse the activation mechanisms. A characteristic reactive position isotope fractionation pattern was observed, distinct from aerobic degradation. Λrp values ranged from 10.5 to 11.8 for propane and from 7.8 to 9.4 for butane. Incubations of strain BuS5 with deuterium-labelled n-alkanes indicated that butane was activated solely at the subterminal C atom. In contrast, propane was activated mainly at the subterminal C atom but also significantly at the terminal C atoms. A conservative estimate suggests that about 70% of the propane activation events occurred at the subterminal C atom and about 30% at the terminal C atoms.


Subject(s)
Bacteria/metabolism , Butanes/metabolism , Propane/metabolism , Seawater/microbiology , Sulfates/metabolism , Anaerobiosis , Biodegradation, Environmental , Carbon Isotopes/metabolism , Deuterium/metabolism , Oxidation-Reduction
12.
mLife ; 3(1): 110-118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38827509

ABSTRACT

Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage. Some microbes are capable of direct metal-to-microbe electron transfer (electrobiocorrosion), but the prevalence of electrobiocorrosion among diverse methanogens and acetogens is poorly understood because of a lack of tools for their genetic manipulation. Previous studies have suggested that respiration with 316L  stainless steel as the electron donor is indicative of electrobiocorrosion, because, unlike pure Fe0, 316L  stainless steel does not abiotically generate H2 as an intermediary electron carrier. Here, we report that all of the methanogens (Methanosarcina vacuolata, Methanothrix soehngenii, and Methanobacterium strain IM1) and acetogens (Sporomusa ovata and Clostridium ljungdahlii) evaluated respired with pure Fe0 as the electron donor, but only M. vacuolata, Mx. soehngenii, and S. ovata were capable of stainless steel electrobiocorrosion. The electrobiocorrosive methanogens required acetate as an additional energy source in order to produce methane from stainless steel. Cocultures of S. ovata and Mx. soehngenii demonstrated how acetogens can provide acetate to methanogens during corrosion. Not only was Methanobacterium strain IM1 not capable of electrobiocorrosion, but it also did not accept electrons from Geobacter metallireducens, an effective electron-donating partner for direct interspecies electron transfer to all methanogens that can directly accept electrons from Fe0. The finding that M. vacuolata, Mx. soehngenii, and S. ovata are capable of electrobiocorrosion, despite a lack of the outer-surface c-type cytochromes previously found to be important in other electrobiocorrosive microbes, demonstrates that there are multiple microbial strategies for making electrical contact with Fe0.

13.
Curr Opin Microbiol ; 79: 102486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733792

ABSTRACT

This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX-SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.


Subject(s)
Alkanes , Archaea , Oxidation-Reduction , Oxidoreductases , Phylogeny , Alkanes/metabolism , Archaea/enzymology , Archaea/genetics , Archaea/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Electron Transport , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Gene Transfer, Horizontal , Bacteria/enzymology , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification
14.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38614960

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes [e.g. those encoding ring-hydroxylating dioxygenases (RHDs)] has been overlooked in PAH biodegradation studies. However, understanding marker-gene expression under different PAH loads can help to monitor and predict bioremediation efficiency. Here, we followed the expression (via RNA sequencing) of Cycloclasticus pugetii strain PS-1 in cell suspension experiments under different naphthalene (100 and 30 mg L-1) concentrations. We identified genes encoding previously uncharacterized RHD subunits, termed rhdPS1α and rhdPS1ß, that were highly transcribed in response to naphthalene-degradation activity. Additionally, we identified six RHD subunit-encoding genes that responded to naphthalene exposure. By contrast, four RHD subunit genes were PAH-independently expressed and three other RHD subunit genes responded to naphthalene starvation. Cycloclasticus spp. could, therefore, use genetic redundancy in key PAH-degradation genes to react to varying PAH loads. This genetic redundancy may restrict the monitoring of environmental hydrocarbon-degradation activity using single-gene expression. For Cycloclasticus pugetii strain PS-1, however, the newly identified rhdPS1α and rhdPS1ß genes might be potential target genes to monitor its environmental naphthalene-degradation activity.


Subject(s)
Biodegradation, Environmental , Naphthalenes , Naphthalenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism
15.
Nature ; 449(7164): 898-901, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17882164

ABSTRACT

The short-chain hydrocarbons ethane, propane and butane are constituents of natural gas. They are usually assumed to be of thermochemical origin, but biological formation of ethane and propane has been also observed. Microbial utilization of short-chain hydrocarbons has been shown in some aerobic species but not in anaerobic species of bacteria. On the other hand, anaerobic utilization of short-chain hydrocarbons would in principle be expected because various anaerobic bacteria grow with higher homologues (> or =C(6)). Indeed, chemical analyses of hydrocarbon-rich habitats with limited or no access of oxygen indicated in situ biodegradation of short-chain hydrocarbons. Here we report the enrichment of sulphate-reducing bacteria (SRB) with such capacity from marine hydrocarbon seep areas. Propane or n-butane as the sole growth substrate led to sediment-free sulphate-reducing enrichment cultures growing at 12, 28 or 60 degrees C. With ethane, a slower enrichment with residual sediment was obtained at 12 degrees C. Isolation experiments resulted in a mesophilic pure culture (strain BuS5) that used only propane and n-butane (methane, isobutane, alcohols or carboxylic acids did not support growth). Complete hydrocarbon oxidation to CO2 and the preferential oxidation of 12C-enriched alkanes were observed with strain BuS5 and other cultures. Metabolites of propane included iso- and n-propylsuccinate, indicating a subterminal as well as an unprecedented terminal alkane activation with involvement of fumarate. According to 16S ribosomal RNA analyses, strain BuS5 affiliates with Desulfosarcina/Desulfococcus, a cluster of widespread marine SRB. An enrichment culture with propane growing at 60 degrees C was dominated by Desulfotomaculum-like SRB. Our results suggest that diverse SRB are able to thrive in seep areas and gas reservoirs on propane and butane, thus altering the gas composition and contributing to sulphide production.


Subject(s)
Bacteria, Anaerobic/metabolism , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Sulfates/metabolism , Sulfur-Reducing Bacteria/metabolism , Anaerobiosis , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Butanes/metabolism , Ethane/metabolism , Kinetics , Molecular Sequence Data , Oceans and Seas , Oxidation-Reduction , Phylogeny , Propane/metabolism , RNA, Ribosomal, 16S , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics
16.
Front Microbiol ; 14: 1250308, 2023.
Article in English | MEDLINE | ID: mdl-37817750

ABSTRACT

Multi element compound-specific stable isotope analysis (ME-CSIA) is a tool to assess (bio)chemical reactions of molecules in the environment based on their isotopic fingerprints. To that effect, ME-CSIA concepts are initially developed with laboratory model experiments to determine the isotope fractionation factors specific for distinct (bio)chemical reactions. Here, we determined for the first time the carbon and hydrogen isotope fractionation factors for the monooxygenation of the short-chain alkanes ethane, propane, and butane. As model organism we used Thauera butanivorans strain Bu-B1211 which employs a non-haem iron monooxygenase (butane monooxygenase) to activate alkanes. Monooxygenation of alkanes was associated with strong carbon and hydrogen isotope effects: εbulkC = -2.95 ± 0.5 ‰ for ethane, -2.68 ± 0.1 ‰ for propane, -1.19 ± 0.18 ‰ for butane; εbulkH = -56.3 ± 15 ‰ for ethane, -40.5 ± 2.3 ‰ for propane, -14.6 ± 3.6 ‰ for butane. This resulted in lambda (Λ ≈ εHbulk/εCbulk) values of 16.2 ± 3.7 for ethane, 13.2 ± 0.7 for propane, and 11.4 ± 2.8 for butane. The results show that ME-CSIA can be used to track the occurrence and impact of monooxygenase-dependent aerobic processes converting short-chain alkanes in natural settings like marine and terrestrial seeps, gas reservoirs, and other geological formations impacted by natural gas.

17.
Front Microbiol ; 14: 1058350, 2023.
Article in English | MEDLINE | ID: mdl-36760511

ABSTRACT

Introduction: Currently there are sparse regulations regarding the discharge of antibiotics from wastewater treatment plants (WWTP) into river systems, making surface waters a latent reservoir for antibiotics and antibiotic resistance genes (ARGs). To better understand factors that influence the fate of ARGs in the environment and to foster surveillance of antibiotic resistance spreading in such habitats, several indicator genes have been proposed, including the integrase gene intI1 and the sulfonamide resistance genes sul1 and sul2. Methods: Here we used quantitative PCR and long-read nanopore sequencing to monitor the abundance of these indicator genes and ARGs present as class 1 integron gene cassettes in a river system from pristine source to WWTP-impacted water. ARG abundance was compared with the dynamics of the microbial communities determined via 16S rRNA gene amplicon sequencing, conventional water parameters and the concentration of sulfamethoxazole (SMX), sulfamethazine (SMZ) and sulfadiazine (SDZ). Results: Our results show that WWTP effluent was the principal source of all three sulfonamides with highest concentrations for SMX (median 8.6 ng/l), and of the indicator genes sul1, sul2 and intI1 with median relative abundance to 16S rRNA gene of 0.55, 0.77 and 0.65%, respectively. Downstream from the WWTP, water quality improved constantly, including lower sulfonamide concentrations, decreasing abundances of sul1 and sul2 and lower numbers and diversity of ARGs in the class 1 integron. The riverine microbial community partially recovered after receiving WWTP effluent, which was consolidated by a microbiome recovery model. Surprisingly, the relative abundance of intI1 increased 3-fold over 13 km of the river stretch, suggesting an internal gene multiplication. Discussion: We found no evidence that low amounts of sulfonamides in the aquatic environment stimulate the maintenance or even spread of corresponding ARGs. Nevertheless, class 1 integrons carrying various ARGs were still present 13 km downstream from the WWTP. Therefore, limiting the release of ARG-harboring microorganisms may be more crucial for restricting the environmental spread of antimicrobial resistance than attenuating ng/L concentrations of antibiotics.

19.
PNAS Nexus ; 2(3): pgad006, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896131

ABSTRACT

Microbial interactions impact the functioning of both natural and engineered systems, yet our ability to directly monitor these highly dynamic and spatially resolved interactions in living cells is very limited. Here, we developed a synergistic approach coupling single-cell Raman microspectroscopy with 15N2 and 13CO2 stable isotope probing in a microfluidic culture system (RMCS-SIP) for live tracking of the occurrence, rate, and physiological shift of metabolic interactions in active microbial assemblages. Quantitative and robust Raman biomarkers specific for N2 and CO2 fixation in both model and bloom-forming diazotrophic cyanobacteria were established and cross-validated. By designing a prototype microfluidic chip allowing simultaneous microbial cultivation and single-cell Raman acquisition, we achieved temporal tracking of both intercellular (between heterocyst and vegetative cells of cyanobacteria) and interspecies N and C metabolite exchange (from diazotroph to heterotroph). Moreover, single-cell N and C fixation and bidirectional transfer rate in living cells were quantified via SIP-induced characteristic Raman shifts. Remarkably, RMCS captured physiological responses of metabolically active cells to nutrient stimuli through comprehensive metabolic profiling, providing multimodal information on the evolution of microbial interactions and functions under fluctuating conditions. This noninvasive RMCS-SIP is an advantageous approach for live-cell imaging and represents an important advancement in the single-cell microbiology field. This platform can be extended for real-time tracking of a wide range of microbial interactions with single-cell resolution and advances the understanding and manipulation of microbial interactions for societal benefit.

20.
Curr Opin Biotechnol ; 67: 119-129, 2021 02.
Article in English | MEDLINE | ID: mdl-33540362

ABSTRACT

Favorable interspecies associations prevail in natural microbial assemblages. Some of these favorable associations are co-metabolic dependent partnerships in which extracellular electrons are exchanged between species. For such electron exchange to occur, the cells must exhibit electroactive interfaces and get involved in direct cell-to-cell contact (Direct Interspecies Electron Transfer/DIET) or use available conductive mineral grains from their environment (Conductive-particle-mediated Interspecies Electron Transfer/CIET). This review will highlight recent discoveries and knowledge gaps regarding DIET and CIET interspecies associations in artificial co-cultures and consortia from natural and man-made environments and emphasize approaches to validate DIET and CIET. Additionally, we acknowledge the initiation of a movement towards applying electric syntrophies in biotechnology, bioremediation and geoengineering for natural attenuation of toxic compounds. Next, we have highlighted the urgent research needs that must be met to develop such technologies.


Subject(s)
Biotechnology , Electricity , Biodegradation, Environmental , Electron Transport , Electrons
SELECTION OF CITATIONS
SEARCH DETAIL