Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Eur Respir J ; 60(1)2022 07.
Article in English | MEDLINE | ID: mdl-34916262

ABSTRACT

RATIONALE: The majority of chronic obstructive pulmonary disease (COPD) patients have chronic bronchitis, for which specific therapies are unavailable. Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction is observed in chronic bronchitis, but has not been proven in a controlled animal model with airway disease. Furthermore, the potential of CFTR as a therapeutic target has not been tested in vivo, given limitations to rodent models of COPD. Ferrets exhibit cystic fibrosis-related lung pathology when CFTR is absent and COPD with bronchitis following cigarette smoke exposure. OBJECTIVES: To evaluate CFTR dysfunction induced by smoking and test its pharmacological reversal by a novel CFTR potentiator, GLPG2196, in a ferret model of COPD with chronic bronchitis. METHODS: Ferrets were exposed for 6 months to cigarette smoke to induce COPD and chronic bronchitis and then treated with enteral GLPG2196 once daily for 1 month. Electrophysiological measurements of ion transport and CFTR function, assessment of mucociliary function by one-micron optical coherence tomography imaging and particle-tracking microrheology, microcomputed tomography imaging, histopathological analysis and quantification of CFTR protein and mRNA expression were used to evaluate mechanistic and pathophysiological changes. MEASUREMENTS AND MAIN RESULTS: Following cigarette smoke exposure, ferrets exhibited CFTR dysfunction, increased mucus viscosity, delayed mucociliary clearance, airway wall thickening and airway epithelial hypertrophy. In COPD ferrets, GLPG2196 treatment reversed CFTR dysfunction, increased mucus transport by decreasing mucus viscosity, and reduced bronchial wall thickening and airway epithelial hypertrophy. CONCLUSIONS: The pharmacologic reversal of acquired CFTR dysfunction is beneficial against pathological features of chronic bronchitis in a COPD ferret model.


Subject(s)
Bronchitis, Chronic , Pulmonary Disease, Chronic Obstructive , Animals , Bronchitis, Chronic/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/metabolism , Hypertrophy , Pulmonary Disease, Chronic Obstructive/metabolism , X-Ray Microtomography
2.
Am J Respir Cell Mol Biol ; 64(5): 604-616, 2021 05.
Article in English | MEDLINE | ID: mdl-33616476

ABSTRACT

Premature-termination codons (PTCs) in CFTR (cystic fibrosis [CF] transmembrane conductance regulator) result in nonfunctional CFTR protein and are the proximate cause of ∼11% of CF-causing alleles, for which no treatments exist. The CFTR corrector lumacaftor and the potentiator ivacaftor improve CFTR function with terminal PTC mutations and enhance the effect of readthrough agents. Novel correctors GLPG2222 (corrector 1 [C1]), GLPG3221 (corrector 2 [C2]), and potentiator GLPG1837 compare favorably with lumacaftor and ivacaftor in vitro. Here, we evaluated the effect of correctors C1a and C2a (derivatives of C1 and C2) and GLPG1837 alone or in combination with the readthrough compound G418 on CFTR function using heterologous Fischer rat thyroid (FRT) cells, the genetically engineered human bronchial epithelial (HBE) 16HBE14o- cell lines, and primary human cells with PTC mutations. In FRT lines pretreated with G418, GLPG1837 elicited dose-dependent increases in CFTR activity that exceeded those from ivacaftor in FRT-W1282X and FRT-R1162X cells. A three-mechanism strategy consisting of G418, GLPG1837, and two correctors (C1a + C2a) yielded the greatest functional improvements in FRT and 16HBE14o- PTC variants, noting that correction and potentiation without readthrough was sufficient to stimulate CFTR activity for W1282X cells. GLPG1837 + C1a + C2a restored substantial function in G542X/F508del HBE cells and restored even more function for W1282X/F508del cells, largely because of the corrector/potentiator effect, with no additional benefit from G418. In G542X/R553X or R1162X/R1162X organoids, enhanced forskolin-induced swelling was observed with G418 + GLPG1837 + C1a + C2a, although GLPG1837 + C1a + C2a alone was sufficient to improve forskolin-induced swelling in W1282X/W1282X organoids. Combination of CFTR correctors, potentiators, and readthrough compounds augments the functional repair of CFTR nonsense mutations, indicating the potential for novel correctors and potentiators to restore function to truncated W1282X CFTR.


Subject(s)
Benzoates/pharmacology , Benzopyrans/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Epithelial Cells/drug effects , Protein Biosynthesis/drug effects , Pyrans/pharmacology , Pyrazoles/pharmacology , Aminophenols/pharmacology , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Line , Chlorides/metabolism , Codon, Nonsense , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Epithelial Cells/metabolism , Humans , Ion Transport/drug effects , Quinolones/pharmacology , Rats , Recovery of Function , Thyroid Epithelial Cells/drug effects , Thyroid Epithelial Cells/metabolism
3.
Hum Mol Genet ; 26(16): 3116-3129, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28575328

ABSTRACT

In-frame premature termination codons (PTCs) account for ∼11% of all disease-associated mutations. PTC suppression therapy utilizes small molecules that suppress translation termination at a PTC to restore synthesis of a full-length protein. PTC suppression is mediated by the base pairing of a near-cognate aminoacyl-tRNA with a PTC and subsequently, the amino acid becomes incorporated into the nascent polypeptide at the site of the PTC. However, little is known about the identity of the amino acid(s) inserted at a PTC during this process in mammalian cells, or how the surrounding sequence context influences amino acid incorporation. Here, we determined the amino acids inserted at the cystic fibrosis transmembrane conductance regulator (CFTR) W1282X PTC (a UGA codon) in the context of its three upstream and downstream CFTR codons during G418-mediated suppression. We found that leucine, cysteine and tryptophan are inserted during W1282X suppression. Interestingly, these amino acids (and their proportions) are significantly different from those recently identified following G418-mediated suppression of the CFTR G542X UGA mutation. These results demonstrate for the first time that local mRNA sequence context plays a key role in near-cognate aminoacyl-tRNA selection during PTC suppression. We also found that some variant CFTR proteins generated by PTC suppression exhibit reduced maturation and activity, indicating the complexity of nonsense suppression therapy. However, both a CFTR corrector and potentiator enhanced activity of protein variants generated by G418-mediated suppression. These results suggest that PTC suppression in combination with CFTR modulators may be beneficial for the treatment of CF patients with PTCs.


Subject(s)
Amino Acids/genetics , Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Amino Acids/metabolism , Codon , Cysteine/genetics , Cysteine/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Genes, Suppressor , HEK293 Cells , Humans , Leucine/genetics , Leucine/metabolism , Mutation , Protein Biosynthesis , Tryptophan/genetics , Tryptophan/metabolism
4.
Proc Natl Acad Sci U S A ; 113(44): 12508-12513, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27702906

ABSTRACT

A premature termination codon (PTC) in the ORF of an mRNA generally leads to production of a truncated polypeptide, accelerated degradation of the mRNA, and depression of overall mRNA expression. Accordingly, nonsense mutations cause some of the most severe forms of inherited disorders. The small-molecule drug ataluren promotes therapeutic nonsense suppression and has been thought to mediate the insertion of near-cognate tRNAs at PTCs. However, direct evidence for this activity has been lacking. Here, we expressed multiple nonsense mutation reporters in human cells and yeast and identified the amino acids inserted when a PTC occupies the ribosomal A site in control, ataluren-treated, and aminoglycoside-treated cells. We find that ataluren's likely target is the ribosome and that it produces full-length protein by promoting insertion of near-cognate tRNAs at the site of the nonsense codon without apparent effects on transcription, mRNA processing, mRNA stability, or protein stability. The resulting readthrough proteins retain function and contain amino acid replacements similar to those derived from endogenous readthrough, namely Gln, Lys, or Tyr at UAA or UAG PTCs and Trp, Arg, or Cys at UGA PTCs. These insertion biases arise primarily from mRNA:tRNA mispairing at codon positions 1 and 3 and reflect, in part, the preferred use of certain nonstandard base pairs, e.g., U-G. Ataluren's retention of similar specificity of near-cognate tRNA insertion as occurs endogenously has important implications for its general use in therapeutic nonsense suppression.


Subject(s)
Codon, Nonsense/genetics , Oxadiazoles/pharmacology , RNA, Transfer/genetics , Ribosomes/drug effects , HEK293 Cells , Humans , Protein Biosynthesis/drug effects , RNA Stability/drug effects , RNA, Transfer/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Transcription, Genetic/drug effects
5.
Am J Respir Crit Care Med ; 194(9): 1092-1103, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27104944

ABSTRACT

RATIONALE: Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. OBJECTIVES: To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. METHODS: Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. MEASUREMENTS AND MAIN RESULTS: From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. CONCLUSIONS: Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.


Subject(s)
Codon, Nonsense/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Drug Discovery/methods , Animals , Cell Line , Codon, Nonsense/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Drug Evaluation, Preclinical/methods , Humans , Luciferases/metabolism , Rats, Inbred F344 , Real-Time Polymerase Chain Reaction
6.
Am J Respir Cell Mol Biol ; 50(4): 805-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24251786

ABSTRACT

New drugs are needed to enhance premature termination codon (PTC) suppression to treat the underlying cause of cystic fibrosis (CF) and other diseases caused by nonsense mutations. We tested new synthetic aminoglycoside derivatives expressly developed for PTC suppression in a series of complementary CF models. Using a dual-luciferase reporter system containing the four most prevalent CF transmembrane conductance regulator (CFTR) nonsense mutations (G542X, R553X, R1162X, and W1282X) within their local sequence contexts (the three codons on either side of the PTC), we found that NB124 promoted the most readthrough of G542X, R1162X, and W1282X PTCs. NB124 also restored full-length CFTR expression and chloride transport in Fischer rat thyroid cells stably transduced with a CFTR-G542XcDNA transgene, and was superior to gentamicin and other aminoglycosides tested. NB124 restored CFTR function to roughly 7% of wild-type activity in primary human bronchial epithelial (HBE) CF cells (G542X/delF508), a highly relevant preclinical model with endogenous CFTR expression. Efficacy was further enhanced by addition of the CFTR potentiator, ivacaftor (VX-770), to airway cells expressing CFTR PTCs. NB124 treatment rescued CFTR function in a CF mouse model expressing a human CFTR-G542X transgene; efficacy was superior to gentamicin and exhibited favorable pharmacokinetic properties, suggesting that in vitro results translated to clinical benefit in vivo. NB124 was also less cytotoxic than gentamicin in a tissue-based model for ototoxicity. These results provide evidence that NB124 and other synthetic aminoglycosides provide a 10-fold improvement in therapeutic index over gentamicin and other first-generation aminoglycosides, providing a promising treatment for a wide array of CFTR nonsense mutations.


Subject(s)
Aminoglycosides/pharmacology , Aminophenols/pharmacology , Codon, Nonsense/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis/drug therapy , Quinolones/pharmacology , Aminoglycosides/chemical synthesis , Aminoglycosides/pharmacokinetics , Aminoglycosides/toxicity , Aminophenols/pharmacokinetics , Animals , Biological Transport , Cell Line , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Drug Synergism , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Inbred CFTR , Mice, Transgenic , Organ of Corti/drug effects , Organ of Corti/pathology , Quinolones/pharmacokinetics , Rats , Rats, Inbred F344 , Time Factors , Transfection
7.
J Cyst Fibros ; 20(5): 865-875, 2021 09.
Article in English | MEDLINE | ID: mdl-34226157

ABSTRACT

BACKGROUND: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849+10 kb C-to-T splicing mutation in the CFTR gene. METHODS: We have screened, in FRT cells expressing the 3849+10 kb C-to-T splicing mutation, ~30 2'-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849+10 kb C-to-T allele. RESULTS: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2'-Methoxy Ethyl modification (2'MOE). CONCLUSION: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.


Subject(s)
Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Drug Development , Oligonucleotides, Antisense , Cells, Cultured , Humans , Mutation , RNA Splicing
8.
Nat Commun ; 12(1): 4358, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272367

ABSTRACT

Premature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs.


Subject(s)
Codon, Nonsense/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/drug effects , Nonsense Mediated mRNA Decay , Peptide Chain Termination, Translational/drug effects , Peptide Termination Factors/metabolism , Aminoglycosides/metabolism , Codon, Nonsense/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Genes, Reporter , Gentamicins/pharmacology , HEK293 Cells , Humans , Microsomes, Liver/drug effects , Peptide Termination Factors/genetics , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , RNA Interference , Ribosomes/metabolism , Structure-Activity Relationship
9.
Pediatr Pulmonol ; 55(7): 1838-1842, 2020 07.
Article in English | MEDLINE | ID: mdl-32281737

ABSTRACT

Premature termination codons (PTCs) in cystic fibrosis transmembrane conductance regulator (CFTR) produce nonfunctional protein. No approved therapies exist for PTC mutations, including W1282X. We hypothesized that ivacaftor, combined with readthrough therapy, may benefit W1282X patients. Two N-of-1 clinical trials were conducted with ataluren and ivacaftor in various combinations. No meaningful clinical benefit was observed in either patient with ivacaftor alone or ataluren/ivacaftor combination. However, isolated improvements of uncertain significance were noted by a nasal potential difference (NPD) and FEV1 % with ivacaftor in Patient-1 and with ataluren/ivacaftor combination by NPD and body mass index in Patient-2. Drug regimen composed of readthrough agents and potentiators warrant further development for W1282X and other CFTR nonsense mutations.


Subject(s)
Aminophenols/administration & dosage , Cystic Fibrosis/drug therapy , Oxadiazoles/administration & dosage , Quinolones/administration & dosage , Adult , Codon, Nonsense , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Female , Humans , Treatment Outcome
10.
Cytokine ; 46(1): 111-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19237298

ABSTRACT

IL-13 is known to affect many processes that contribute to an asthmatic phenotype, including inflammation, fibrosis, and mucus production. Members of the aquaporin (AQP) family of transmembrane water channels are targets of regulation in models of lung injury and inflammation. Therefore, we examined AQP mRNA and protein expression in allergen and IL-13-induced mouse models of asthma. Lungs from ovalbumin sensitized and ovalbumin challenged (OVA/OVA) and IL-13 treated mice showed airway thickening, increased mucus production, and pulmonary eosinophilia. Pulmonary function tests showed a significant increase in methacholine-induced airway hyperreactivity in OVA/OVA and IL-13-treated mice as compared with controls. Quantitative PCR analysis revealed differential regulation of AQPs in these two models. AQP1 and AQP4 mRNA expression was downregulated in the OVA/OVA model, but not in the IL-13 model. AQP5 mRNA was reduced in both models, whereas AQP3 was upregulated only in the IL-13 model. Western analysis showed that diminished expression of an apically localized aquaporin, (AQP5), and concomitant upregulation of a basolateral aquaporin (AQP3 or AQP4) are characteristic features of both inducible asthma models. These results demonstrate that aquaporins are common targets of gene expression in both allergen and IL-13 induced mouse models of asthma.


Subject(s)
Aquaporin 5/biosynthesis , Aquaporin 5/metabolism , Asthma/metabolism , Gene Expression Regulation , Interleukin-13/biosynthesis , Animals , Aquaporin 1/biosynthesis , Aquaporin 4/biosynthesis , Bronchoconstrictor Agents/pharmacology , Disease Models, Animal , Female , Inflammation , Lung/metabolism , Methacholine Chloride/pharmacology , Mice , Mice, Inbred BALB C , Models, Biological
11.
J Cyst Fibros ; 16(1): 24-29, 2017 01.
Article in English | MEDLINE | ID: mdl-27707539

ABSTRACT

Premature termination codons (PTCs) in cystic fibrosis transmembrane conductance regulator (CFTR) gene result in nonfunctional CFTR protein and are the proximate cause of ~11% of CF causing alleles. Aminoglycosides and other novel agents are known to induce translational readthrough of PTCs, a potential therapeutic approach. Among PTCs, W1282X CFTR is unique, as it is a C-terminal CFTR mutation that can exhibit partial activity, even in the truncated state. The potentiator ivacaftor (VX-770) is approved for treating CF patients with G551D and other gating mutations. Based on previous studies demonstrating the beneficial effect of ivacaftor for PTC mutations following readthrough in vitro, we hypothesized that ivacaftor may enhance CFTR activity in CF patients expressing W1282X CFTR, and could be further enhanced by readthrough. Ivacaftor significantly increased CFTR activity in W1282X-expressing cells compared to R1162X CFTR cells, and was further enhanced by readthrough with the aminoglycoside G418. Primary nasal epithelial cells from a W1282X homozygous patient showed improved CFTR function in the presence of ivacaftor. Upon ivacaftor administration to the same patient, there was significant improvement in pulmonary exacerbation frequency, BMI, and insulin requirement, whereas FEV1 remained stable over 3years. These studies suggest that ivacaftor may have moderate clinical benefit in patients with preserved expression of the W1282X CFTR mutation by stimulating residual activity of the truncated protein, suggesting the need for further studies including the addition of efficacious readthrough agents.


Subject(s)
Aminophenols/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis , Quinolones/pharmacology , Chloride Channel Agonists/pharmacology , Codon, Nonsense , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Homozygote , Humans , Ion Transport/drug effects , Ion Transport/genetics , Treatment Outcome
12.
J Exp Zool A Ecol Genet Physiol ; 315(7): 424-37, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21656914

ABSTRACT

Cope's gray treefrog, Hyla chrysoscelis,is a freeze-tolerant anuran which accumulates and distributes glycerol as a cryoprotectant before freezing. We hypothesize that HC-3, an aquaglyceroporin member of the MIP family of water pores, may play an important role in the process of freeze tolerance by mediating transmembrane passage of glycerol and water during cold-acclimation. The objectives of this study were two-fold: to examine HC-3 protein abundance and cellular localization in erythrocytes from cold- and warm-acclimated frogs and to develop and characterize an erythrocyte cell culture system for examining HC-3 gene regulation. Compared with warm-acclimated frogs, erythrocytes from cold-acclimated frogs had higher HC-3 protein expression and enhanced plasma membrane localization. Furthermore, erythrocytes from cold- and warm-acclimated frogs maintained in culture at 4 and 20°C exhibited time- and temperature-dependent regulation of HC-3 expression and an increase in the abundance of high molecular weight immunoreactive species within 24 hr of culture at 20°C. Deglycosylation of erythrocyte proteins resulted in the disappearance of the high molecular weight species, indicating that HC-3 is post-translationally modified by N-linked glycosylation. Erythrocytes cultured in media containing glycerol also showed an increased abundance of the high molecular weight bands and enhanced plasma membrane localization of HC-3, suggesting a role for glycerol in regulating HC-3 subcellular trafficking. Thus, the development of this erythrocyte cell culture system from H. chrysoscelis opened an opportunity to study the properties of cells with changing expression of an aquaglyceroporin, HC-3, and to explore the factors regulating that expression.


Subject(s)
Acclimatization/physiology , Anura/physiology , Aquaglyceroporins/metabolism , Erythrocytes/metabolism , Animals , Aquaglyceroporins/analysis , Blotting, Western , Cell Survival , Cells, Cultured , Cold Temperature , Erythrocytes/chemistry , Hot Temperature , Immunohistochemistry , Male
13.
Biotechniques ; 50(5): 329-32, 2011 May.
Article in English | MEDLINE | ID: mdl-21548895

ABSTRACT

Cope's gray treefrog, Hyla chrysoscelis, is a freeze-tolerant anuran that accumulates cryoprotective glycerol during cold acclimation. H. chrysoscelis erythrocytes express the aquaglyceroporin HC-3, which facilitates transmembrane glycerol and water movement. Aquaglyceroporins have no pharmacological inhibitors, and no genetic knockout tools currently exist for H. chrysoscelis. A phosphorodiamidate morpholino oligo (PMO)-mediated expression knockdown approach was therefore pursued to provide a model for testing the role of HC-3. We describe a novel procedure optimized for specific, efficient knockdown of HC-3 expression in amphibian erythrocyte suspensions cultured at nonmammalian physiological temperatures using Endo-Porter. Our protocol includes three critical components: pre-incubation at 37°C, two rounds of Endo-Porter and HC-3 PMO administration at ~23°C, and continuous shaking at 190 rpm. This combination of steps resulted in 94% reduction in HC-3 protein expression (Western blot), substantial decrease in HC-3 expression in >65% of erythrocytes, and no detectable expression in an additional 30% of cells (immunocytochemistry).


Subject(s)
Anura/metabolism , Aquaglyceroporins/drug effects , Aquaglyceroporins/metabolism , Morpholines/metabolism , Oligonucleotides, Antisense/administration & dosage , Peptides/administration & dosage , Animals , Erythrocytes/metabolism , Glycerol/metabolism , Morpholinos , Oligonucleotides/administration & dosage , Oligonucleotides/genetics , Oligonucleotides, Antisense/genetics , Peptides/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL