Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233163

ABSTRACT

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Subject(s)
Microphthalmia-Associated Transcription Factor/metabolism , NADP Transhydrogenases/metabolism , Skin Pigmentation/radiation effects , Ultraviolet Rays , Animals , Cell Line , Cohort Studies , Cyclic AMP/metabolism , DNA Damage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Genetic Predisposition to Disease , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanosomes/drug effects , Melanosomes/metabolism , Melanosomes/radiation effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , NADP Transhydrogenases/antagonists & inhibitors , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Polymorphism, Single Nucleotide/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Proteolysis/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin Pigmentation/drug effects , Skin Pigmentation/genetics , Ubiquitin/metabolism , Zebrafish
2.
J Am Acad Dermatol ; 90(2): 288-298, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37797836

ABSTRACT

BACKGROUND: The recent expansion of immunotherapy for stage IIB/IIC melanoma highlights a growing clinical need to identify patients at high risk of metastatic recurrence and, therefore, most likely to benefit from this therapeutic modality. OBJECTIVE: To develop time-to-event risk prediction models for melanoma metastatic recurrence. METHODS: Patients diagnosed with stage I/II primary cutaneous melanoma between 2000 and 2020 at Mass General Brigham and Dana-Farber Cancer Institute were included. Melanoma recurrence date and type were determined by chart review. Thirty clinicopathologic factors were extracted from electronic health records. Three types of time-to-event machine-learning models were evaluated internally and externally in the distant versus locoregional/nonrecurrence prediction. RESULTS: This study included 954 melanomas (155 distant, 163 locoregional, and 636 1:2 matched nonrecurrences). Distant recurrences were associated with worse survival compared to locoregional/nonrecurrences (HR: 6.21, P < .001) and to locoregional recurrences only (HR: 5.79, P < .001). The Gradient Boosting Survival model achieved the best performance (concordance index: 0.816; time-dependent AUC: 0.842; Brier score: 0.103) in the external validation. LIMITATIONS: Retrospective nature and cohort from one geography. CONCLUSIONS: These results suggest that time-to-event machine-learning models can reliably predict the metastatic recurrence from localized melanoma and help identify high-risk patients who are most likely to benefit from immunotherapy.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Retrospective Studies , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/pathology
3.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445938

ABSTRACT

Classic diffusely infiltrating lobular carcinoma has imaging features divergent from the breast cancers originating from the terminal ductal lobular units and from the major lactiferous ducts. Although the term "invasive lobular carcinoma" implies a site of origin within the breast lobular epithelium, we were unable to find evidence supporting this assumption. Exceptional excess of fibrous connective tissue and the unique cell architecture combined with the aberrant features at breast imaging suggest that this breast malignancy has not originated from cells lining the breast ducts and lobules. The only remaining relevant component of the fibroglandular tissue is the mesenchyme. The cells freshly isolated and cultured from diffusely infiltrating lobular carcinoma cases contained epithelial-mesenchymal hybrid cells with both epithelial and mesenchymal properties. The radiologic and histopathologic features of the tumours and expression of the mesenchymal stem cell positive markers CD73, CD90, and CD105 all suggest development in the direction of mesenchymal transition. These hybrid cells have tumour-initiating potential and have been shown to have poor prognosis and resistance to therapy targeted for malignancies of breast epithelial origin. Our work emphasizes the need for new approaches to the diagnosis and therapy of this highly fatal breast cancer subtype.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Mammary Glands, Human , Humans , Female , Carcinoma, Lobular/metabolism , Breast Neoplasms/metabolism , Breast/metabolism , Epithelial Cells/metabolism , Mammary Glands, Human/metabolism , Carcinoma, Ductal, Breast/pathology
4.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069171

ABSTRACT

Micro-environmental factors, including stromal and immune cells, cytokines, and circulating hormones are well recognized to determine cancer progression. Melanoma cell growth was recently shown to be suppressed by cholecystokinin/gastrin (CCK) receptor antagonists, and our preliminary data suggested that melanoma patients with Helicobacter gastritis (which is associated with elevated serum gastrin) might have an increased risk of cancer progression. Therefore, in the present study, we examined how gastrin may act on melanoma cells. In 89 melanoma patients, we found a statistically significant association between circulating gastrin concentrations and melanoma thickness and metastasis, which are known risk factors of melanoma progression and prognosis. Immunocytochemistry using a validated antibody confirmed weak to moderate CCK2R expression in both primary malignant melanoma cells and the melanoma cell lines SK-MEL-2 and G361. Furthermore, among the 219 tumors in the Skin Cutaneous Melanoma TCGA Pan-Cancer dataset showing gastrin receptor (CCKBR) expression, significantly higher CCKBR mRNA levels were linked to stage III-IV than stage I-II melanomas. In both cell lines, gastrin increased intracellular calcium levels and stimulated cell migration and invasion through mechanisms inhibited by a CCK2 receptor antagonist. Proteomic studies identified increased MMP-2 and reduced TIMP-3 levels in response to gastrin that were likely to contribute to the increased migration of both cell lines. However, the effects of gastrin on tumor cell invasion were relatively weak in the presence of the extracellular matrix. Nevertheless, dermal fibroblasts/myofibroblasts, known also to express CCK2R, increased gastrin-induced cancer cell invasion. Our data suggest that in a subset of melanoma patients, an elevated serum gastrin concentration is a risk factor for melanoma tumor progression, and that gastrin may act on both melanoma and adjacent stromal cells through CCK2 receptors to promote mechanisms of tumor migration and invasion.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/metabolism , Gastrins/pharmacology , Gastrins/metabolism , Proteomics , Receptors, Cholecystokinin , Receptor, Cholecystokinin B/genetics , Receptor, Cholecystokinin B/metabolism
5.
Exp Cell Res ; 374(2): 290-303, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30529407

ABSTRACT

D-type cyclins are important regulatory proteins of the G1/S phase of the cell cycle however, their specific functions are only partially understood. We show that silencing of individual D-type cyclins has no effect on the proliferation and morphology of Immortalized non-tumorigenic human epidermal (HaCaT) cells, while double and triple D cyclin silencing results in the failure of the cytokinesis leading to the appearance of large multinucleated cells. Both CDC20 and Ki67 mRNA is downregulated in these cells. Ki67 mRNA silenced cells show similar multinucleated cellular phenotype as double or triple D cyclin silenced cells without affecting D cyclin expression, suggesting that Ki67 is necessary for normal G2/M transition. Our data have revealed that cyclin D1 may have a leading role in G1/S phase regulation and suggest an incomplete functional overlap among D cyclins. Our results indicate that beside their well-known functions during the G0-G1/S phase, D-type cyclins play a pivotal role in the regulation of mitosis via influencing Ki67 expression in a downstream manner probably through E2F1 activation in HaCaT cells.


Subject(s)
Cell Cycle/physiology , Cyclin D/metabolism , Ki-67 Antigen/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Humans , Mitosis/physiology , RNA, Messenger/metabolism
6.
Neurol Sci ; 41(1): 125-129, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31478152

ABSTRACT

OBJECTIVE: The prevalence of xeroderma pigmentosum (XP) is quite low in Europe, which may result in a delay in determining the appropriate diagnosis. Furthermore, some subtypes of XP, including XPA, may manifest themselves with quite severe neurological symptoms in addition to the characteristic dermatological lesions. Accordingly, the aim of the current study is to highlight the predominant neurological aspects of XPA, as well as mild-to-moderate dermatological signs in a Hungarian family with 5 affected siblings. CASE REPORTS: The symptoms of the Caucasian male proband started to develop at 13-14 years of age with predominantly cerebellar, hippocampal, and brainstem alterations. His elder sister and three younger brothers all presented similar, but less expressed neurological signs. The diagnostic work-up, including clinical exome sequencing, revealed 2 novel compound heterozygous mutations (p.Gln146_Tyr148delinsHis, p.Arg258TyrfsTer5) in the XPA gene. Surprisingly, only mild-to-moderate dermatological alterations were observed, and less severe characteristic ophthalmological and auditory signs were detected. CONCLUSIONS: In summary, we present the first family with genetically confirmed XPA in the Central-Eastern region of Europe, clearly supporting the notion that disturbed function of the C-terminal region of the XPA protein contributes to the development of age-dependent neurologically predominant signs. This case series may help clinicians recognize this rare disorder.


Subject(s)
Mutation/genetics , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/genetics , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum/diagnostic imaging , Xeroderma Pigmentosum/genetics , Adult , Fatal Outcome , Female , Humans , Hungary , Male , Nervous System Diseases/complications , Pedigree , Phenotype , Xeroderma Pigmentosum/complications
7.
Toxicol Appl Pharmacol ; 366: 17-24, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30684528

ABSTRACT

Ryanodine receptors have an important role in the regulation of intracellular calcium levels in the nervous system and muscle. It has been described that ryanodine receptors influence keratinocyte differentiation and barrier homeostasis. Our goal was to examine the role of ryanodine receptors in the healing of full-thickness dermal wounds by means of in vitro and in vivo methods. The effect of ryanodine receptors on wound healing, microcirculation and inflammation was assessed in an in vivo mouse wound healing model, using skin fold chambers in the dorsal region, and in HaCaT cell scratch wound assay in vitro. SKH-1 mice were subjected to sterile saline (n = 36) or ryanodine receptor agonist 4-chloro-m-cresol (0.5 mM) (n = 42) or ryanodine receptor antagonist dantrolene (100 µM) (n = 42). Application of ryanodine receptor agonist 4-chloro-m-cresol did not influence the studied parameters significantly, whereas ryanodine receptor antagonist dantrolene accelerated the wound closure. Inhibition of the calcium channel also increased the vessel diameters in the wound edges during the process of healing and increased the blood flow in the capillaries at all times of measurement. Furthermore, application of dantrolene decreased xanthine-oxidoreductase activity during the inflammatory phase of wound healing. Inhibition of ryanodine receptor-mediated effects positively influence wound healing. Thus, dantrolene may be of therapeutic potential in the treatment of wounds.


Subject(s)
Calcium Channel Blockers/pharmacology , Dantrolene/pharmacology , Keratinocytes/drug effects , Ryanodine Receptor Calcium Release Channel/drug effects , Skin/drug effects , Wound Healing/drug effects , Wounds, Penetrating/drug therapy , Animals , Blood Flow Velocity , Calcium Signaling/drug effects , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice, Hairless , Microcirculation/drug effects , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Skin/blood supply , Skin/injuries , Skin/metabolism , Time Factors , Wounds, Penetrating/metabolism , Wounds, Penetrating/pathology , Wounds, Penetrating/physiopathology , Xanthine Dehydrogenase/metabolism
8.
Cell Biol Toxicol ; 35(4): 293-332, 2019 08.
Article in English | MEDLINE | ID: mdl-30900145

ABSTRACT

Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.


Subject(s)
Melanoma/pathology , Melanoma/therapy , Translational Research, Biomedical/methods , Biological Specimen Banks/trends , Biomarkers, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Humans , Imidazoles/pharmacology , Melanoma/metabolism , Neoplasm Staging , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Pyridones/pharmacology , Pyrimidinones/pharmacology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Melanoma, Cutaneous Malignant
9.
Helicobacter ; 22(2)2017 Apr.
Article in English | MEDLINE | ID: mdl-27578489

ABSTRACT

BACKGROUND: Helicobacter pylori can cause many gastrointestinal and also extra-gastrointestinal disorders and is a major risk factor for gastric carcinoma and MALT lymphoma. Currently, numerous antibiotic-based therapies are available; however, these therapies have numerous drawbacks, mainly due to increasing prevalence of antibiotic resistant strains. Thus, there is an urgent need to develop novel therapeutic agents against H. pylori infections. MATERIALS AND METHODS: In this study, the anti-H. pylori activity of 2:1 mixture of Satureja hortensis and Origanum vulgare subsp. hirtum essential oils (2MIX) was investigated in vivo. After screening in vitro cytotoxicity of 2MIX on mammalian cell lines, the therapeutic efficiency was studied in a mouse model, where changes in H. pylori colonization were detected by PCR and histology of gastric samples. The immune reaction of mice was tested based on cytokine and chemokine production, and the in vivo toxicity of 2MIX was also investigated by measuring ALT and AST enzyme activities and Cyp3a11 and HO-1 mRNA levels in livers of mice. RESULTS: 2MIX had not shown in vitro cytotoxicity against cell lines, only the highest concentration caused significant decrease in their survival rates. In the in vivo experiments, 2MIX successfully eradicated the pathogen in 70% of the mice. We could not detect toxicity or altered cytokine and chemokine balance after in vivo treatments in mice. CONCLUSIONS: These results show that 2MIX is effective in reducing H. pylori colonization suggesting that this essential oil mixture has great potential as a new, effective, and safe therapeutic agent against H. pylori.


Subject(s)
Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Oils, Volatile/administration & dosage , Origanum/chemistry , Satureja/chemistry , Animals , Cytokines/analysis , Disease Models, Animal , Female , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Helicobacter pylori/isolation & purification , Histocytochemistry , Liver/pathology , Liver Function Tests , Mice, Inbred BALB C , Oils, Volatile/adverse effects , Oils, Volatile/isolation & purification , Treatment Outcome
10.
Gastroenterology ; 148(2): 427-39.e16, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25447846

ABSTRACT

BACKGROUND & AIMS: Excessive consumption of ethanol is one of the most common causes of acute and chronic pancreatitis. Alterations to the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) also cause pancreatitis. However, little is known about the role of CFTR in the pathogenesis of alcohol-induced pancreatitis. METHODS: We measured CFTR activity based on chloride concentrations in sweat from patients with cystic fibrosis, patients admitted to the emergency department because of excessive alcohol consumption, and healthy volunteers. We measured CFTR levels and localization in pancreatic tissues and in patients with acute or chronic pancreatitis induced by alcohol. We studied the effects of ethanol, fatty acids, and fatty acid ethyl esters on secretion of pancreatic fluid and HCO3(-), levels and function of CFTR, and exchange of Cl(-) for HCO3(-) in pancreatic cell lines as well as in tissues from guinea pigs and CFTR knockout mice after administration of alcohol. RESULTS: Chloride concentrations increased in sweat samples from patients who acutely abused alcohol but not in samples from healthy volunteers, indicating that alcohol affects CFTR function. Pancreatic tissues from patients with acute or chronic pancreatitis had lower levels of CFTR than tissues from healthy volunteers. Alcohol and fatty acids inhibited secretion of fluid and HCO3(-), as well as CFTR activity, in pancreatic ductal epithelial cells. These effects were mediated by sustained increases in concentrations of intracellular calcium and adenosine 3',5'-cyclic monophosphate, depletion of adenosine triphosphate, and depolarization of mitochondrial membranes. In pancreatic cell lines and pancreatic tissues of mice and guinea pigs, administration of ethanol reduced expression of CFTR messenger RNA, reduced the stability of CFTR at the cell surface, and disrupted folding of CFTR at the endoplasmic reticulum. CFTR knockout mice given ethanol or fatty acids developed more severe pancreatitis than mice not given ethanol or fatty acids. CONCLUSIONS: Based on studies of human, mouse, and guinea pig pancreata, alcohol disrupts expression and localization of the CFTR. This appears to contribute to development of pancreatitis. Strategies to increase CFTR levels or function might be used to treat alcohol-associated pancreatitis.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Ethanol/toxicity , Pancreatitis/chemically induced , Adenosine Triphosphate/analysis , Animals , Bicarbonates/metabolism , Calcium/metabolism , Chloride Channels/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/analysis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Guinea Pigs , Humans , Mice , Mutation , Protein Folding/drug effects
11.
Int J Mol Sci ; 17(6)2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27271591

ABSTRACT

After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.


Subject(s)
Fibroblasts/metabolism , Macrophages/metabolism , Melanoma/metabolism , Phenotype , Stromal Cells/metabolism , Biomarkers , Cell Culture Techniques , Cell Fusion , Cells, Cultured , Fibroblasts/pathology , Humans , Hybrid Cells , Macrophages/pathology , Melanoma/pathology , Monocytes/metabolism , Monocytes/pathology , Stromal Cells/pathology
12.
Int J Mol Sci ; 17(6)2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27338362

ABSTRACT

Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell's phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAF(V600E) melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAF(V600E) protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAF(V600E) with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAF(V600E) mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAF(V600E) mutation or protein in the peritumoral stroma of BRAF(WT) melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome.


Subject(s)
Melanoma/genetics , Mutation, Missense , Proto-Oncogene Proteins B-raf/genetics , Stromal Cells/metabolism , Cell Fusion , Humans , Melanoma/pathology , Stromal Cells/pathology
13.
Int J Mol Sci ; 16(7): 15425-41, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26184156

ABSTRACT

A lamellar lyotropic liquid crystal genistein-based formulation (LLC-Gen) was prepared in order to increase the aqueous solubility of the lipophilic phytocompound genistein. The formulation was applied locally, in a murine model of melanoma, with or without electroporation. The results demonstrated that, when the formulation was applied by electroporation, the tumors appeared later. During the 21 days of the experiment, the LLC-Gen formulation decreased the tumor volume, the amount of melanin and the degree of erythema, but when electroporation was applied, all these parameters indicated a better prognosis even (lower tumor volume, amount of melanin and degree of erythema). Although hematoxylin-eosin (HE) staining confirmed the above events, application of the LLC-Gen formulation by electroporation did not lead to a significant effect in terms of the serum concentrations of the protein S100B and serum neuron specific enolase (NSE), or the tissue expression of the platelet-derived growth factor receptor ß (PDGFRß) antibody.


Subject(s)
Anticarcinogenic Agents/chemistry , Drug Carriers/chemistry , Electroporation/methods , Genistein/chemistry , Liquid Crystals/chemistry , Animals , Anticarcinogenic Agents/administration & dosage , Cell Line, Tumor , Chemistry, Pharmaceutical , Female , Genistein/administration & dosage , Immunohistochemistry , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Phosphopyruvate Hydratase/blood , Receptor, Platelet-Derived Growth Factor beta/metabolism , Rheology , S100 Calcium Binding Protein beta Subunit/blood , Skin/metabolism , Skin/pathology , Transplantation, Homologous , Triazines/metabolism
14.
J Neurooncol ; 119(2): 253-61, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24880750

ABSTRACT

Ionizing radiation plays a major role in the treatment of brain tumors, but side-effects may restrict the efficacy of therapy. In the present study, our goals were to establish whether the administration of L-alpha-glycerylphosphorylcholine (GPC) can moderate or prevent any of the irradiation-induced functional and morphological changes in a rodent model of hippocampus irradiation. Anesthetized adult (6-weeks-old) male Sprague-Dawley rats were subjected to 40 Gy irradiation of one hemisphere of the brain, without or with GPC treatment (50 mg/kg bw by gavage), the GPC treatment continuing for 4 months. The effects of this partial rat brain irradiation on the spatial orientation and learning ability of the rats were assessed with the repeated Morris water maze (MWM) test. Histopathologic (HP) evaluation based on hematoxylin-eosin and Luxol blue staining was performed 4 months after irradiation. The 40 Gy irradiation resulted in a moderate neurological deficit at the levels of both cognitive function and morphology 4 months after the irradiation. The MWM test proved to be a highly sensitive tool for the detection of neurofunctional impairment. The site navigation of the rats was impaired by the irradiation, but the GPC treatment markedly decreased the cognitive impairment. HP examination revealed lesser amounts of macrophage density, reactive gliosis, calcification and extent of demyelination in the GPC-treated group. GPC treatment led to significant protection against the cognitive decline and cellular damage, evoked by focal brain irradiation at 40 Gy dose level. Our study warrants further research on the protective or mitigating effects of GPC on radiation injuries.


Subject(s)
Glycerylphosphorylcholine/pharmacology , Hippocampus/drug effects , Hippocampus/radiation effects , Neuroprotective Agents/pharmacology , Radiation-Protective Agents/pharmacology , Animals , Cognition/drug effects , Cognition/radiation effects , Hippocampus/pathology , Male , Maze Learning/drug effects , Maze Learning/radiation effects , Photomicrography , Radiation Dosage , Random Allocation , Rats, Sprague-Dawley , Space Perception/drug effects , Space Perception/radiation effects
15.
Magy Seb ; 67(5): 287-96, 2014 Oct.
Article in Hungarian | MEDLINE | ID: mdl-25327403

ABSTRACT

INTRODUCTION: Barrett's esophagus (BE) is the only known precursor of adenocarcinoma occuring in the lower third of the esophagus. According to statistics, severity and elapsed time of gastroesophageal reflux disease (GERD) are major pathogenetic factors in the development of Barrett's esophagus. PATIENTS AND METHODS: In a retrospective study between 2001 and 2008, we compared the preoperative results (signs and sympthoms, 24 hour pH manometry, esophageal manometry, Bilitec) and treatment efficacy of 176 GERD patients and 78 BE patients, who have undergone laparoscopic Nissen procedure for reflux disease. RESULTS: The two groups of patients had similar demographic features, and elapsed time of reflux sympthoms were also equal. Both groups were admitted for surgery after a median time of 1.5 years (19.87 vs. 19.20 months) of ineffective medical (proton pump inhibitors) treatment. Preoperative functional tests showed a more severe presence of acid reflux in the BE group (DeMeester score 18.9 versus 41.9, p < 0.001). On the other hand, mano-metry - despite confirming lower esophageal sphincter (LES) damage - did not show difference between the two groups (12.10 vs. 12.57 mmHg, p = 0.892). We did not experience any mortality cases with laparoscopic antireflux procedures, although in two cases we had to convert during the operation (1 due to extensive adhesions, and 1 due to injury to the spleen). 3 months after the procedure - according to Visick score - both groups experienced a significant decrease, or lapse in reflux complaints (group I: 73%, group II: 81% of patients), LES functions improved (17.58 vs.18.70 mmHg), and the frequency and exposition of acid reflux decreased (DeMeester score 7.73 vs. 12.72). CONCLUSION: The severity of abnormal acid reflux occuring parallel with the incompetent function of the damaged LES triggers not only inflammation in the gastroesophageal junction (GEJ), but also metaplastic process, and the development of Barrett's esophagus. Laparoscopic Nissen procedure for reflux disease can further improve outcome among patients with GERD not responding to conservative therapy.


Subject(s)
Barrett Esophagus/etiology , Barrett Esophagus/surgery , Fundoplication , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/surgery , Adenocarcinoma/etiology , Adenocarcinoma/prevention & control , Adult , Aged , Barrett Esophagus/complications , Barrett Esophagus/drug therapy , Barrett Esophagus/physiopathology , Esophageal Neoplasms/etiology , Esophageal Neoplasms/prevention & control , Female , Fundoplication/methods , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/physiopathology , Humans , Laparoscopy , Male , Manometry , Middle Aged , Postprandial Period , Proton Pump Inhibitors/administration & dosage , Retrospective Studies , Severity of Illness Index , Time Factors
16.
Melanoma Res ; 34(1): 54-62, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37962233

ABSTRACT

We hypothesise that regression may have an impact on the effectiveness of adjuvant IFN therapy, based on its role in the host immune response. Our purpose is to investigate regression and ulceration as prognostic factors in case of interferon-alpha (IFN)-treated melanoma patients. We followed 357 IFN-treated melanoma patients retrospectively, investigating progression-free survival (PFS) and overall survival (OS) depending on the presence of ulceration and regression. A Kaplan-Meier analysis was performed, and we used a Cox regression analysis to relate risk factors. The survival function of the Cox regression was used to measure the effect of regression and ulceration on PFS and OS depending on the Breslow thickness (T1-T4) of the primary tumour. Regression was significantly positively related to PFS ( P  = 0.0018, HR = 0.352) and OS ( P  = 0.0112, HR = 0.380), while ulceration showed a negative effect (PFS: P  = 0.0001, HR = 2.629; OS: P  = 0.0003, HR = 2.388). They influence survival independently. The most favourable outcome was measured in the regressed/non-ulcerated group, whereas the worse was in the non-regressed/ulcerated one. Of risk factors, Breslow thickness is the most significant predictor. The efficacy of regression is regardless of Breslow thickness, though the more favourable the impact of regression was in the thicker primary lesions. Our results indicate that regression is associated with a more favourable outcome for IFN-treated melanoma patients, whereas ulceration shows an inverse relation. Further studies are needed to analyse the survival benefit of regression in relation to innovative immune checkpoint inhibitors.


Subject(s)
Antineoplastic Agents , Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Retrospective Studies , Antineoplastic Agents/therapeutic use , Interferon-alpha/adverse effects , Prognosis
17.
JAMA Netw Open ; 7(2): e2356479, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38363565

ABSTRACT

Importance: The COVID-19 pandemic resulted in delayed access to medical care. Restrictions to health care specialists, staff shortages, and fear of SARS-CoV-2 infection led to interruptions in routine care, such as early melanoma detection; however, premature mortality and economic burden associated with this postponement have not been studied yet. Objective: To determine the premature mortality and economic costs associated with suspended melanoma screenings during COVID-19 pandemic lockdowns by estimating the total burden of delayed melanoma diagnoses for Europe. Design, Setting, and Participants: This multicenter economic evaluation used population-based data from patients aged at least 18 years with invasive primary cutaneous melanomas stages I to IV according to the American Joint Committee on Cancer (AJCC) seventh and eighth editions, including melanomas of unknown primary (T0). Data were collected from January 2017 to December 2021 in Switzerland and from January 2019 to December 2021 in Hungary. Data were used to develop an estimation of melanoma upstaging rates in AJCC stages, which was verified with peripandemic data. Years of life lost (YLL) were calculated and were, together with cost data, used for financial estimations. The total financial burden was assessed through direct and indirect treatment costs. Models were building using data from 50 072 patients aged 18 years and older with invasive primary cutaneous melanomas stages I to IV according to the AJCC seventh and eighth edition, including melanomas of unknown primary (T0) from 2 European tertiary centers. Data from European cancer registries included patient-based direct and indirect cost data, country-level economic indicators, melanoma incidence, and population rates per country. Data were analyzed from July 2021 to September 2022. Exposure: COVID-19 lockdown-related delay of melanoma detection and consecutive public health and economic burden. As lockdown restrictions varied by country, lockdown scenario was defined as elimination of routine medical examinations and severely restricted access to follow-up examinations for at least 4 weeks. Main Outcomes and Measures: Primary outcomes were the total burden of a delay in melanoma diagnosis during COVID-19 lockdown periods, measured using the direct (in US$) and indirect (calculated as YLL plus years lost due to disability [YLD] and disability-adjusted life-years [DALYs]) costs for Europe. Secondary outcomes included estimation of upstaging rate, estimated YLD, YLL, and DALY for each European country, absolute direct and indirect treatment costs per European country, proportion of the relative direct and indirect treatment costs for the countries, and European health expenditure. Results: There were an estimated 111 464 (range, 52 454-295 051) YLL due to pandemic-associated delay in melanoma diagnosis in Europe, and estimated total additional costs were $7.65 (range, $3.60 to $20.25) billion. Indirect treatment costs were the main cost driver, accounting for 94.5% of total costs. Estimates for YLD in Europe resulted in 15 360 years for the 17% upstaging model, ranging from 7228 years (8% upstaging model) to 40 660 years (45% upstaging model). Together, YLL and YLD constitute the overall disease burden, ranging from 59 682 DALYs (8% upstaging model) to 335 711 DALYs (45% upstaging model), with 126 824 DALYs for the real-world 17% scenario. Conclusions and Relevance: This economic analysis emphasizes the importance of continuing secondary skin cancer prevention measures during pandemics. Beyond the personal outcomes of a delayed melanoma diagnosis, the additional economic and public health consequences are underscored, emphasizing the need to include indirect economic costs in future decision-making processes. These estimates on DALYs and the associated financial losses complement previous studies highlighting the cost-effectiveness of screening for melanoma.


Subject(s)
COVID-19 , Melanoma , Neoplasms, Unknown Primary , Skin Neoplasms , Humans , Adolescent , Adult , Melanoma/diagnosis , Melanoma/epidemiology , Pandemics , Neoplasms, Unknown Primary/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Communicable Disease Control , Europe/epidemiology , Cost of Illness , Skin Neoplasms/diagnosis , Skin Neoplasms/epidemiology , COVID-19 Testing
18.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746333

ABSTRACT

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

19.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38545623

ABSTRACT

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

20.
Am J Physiol Gastrointest Liver Physiol ; 305(8): G552-63, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23907822

ABSTRACT

Gastrointestinal myofibroblasts are contractile, electrically nonexcitable, transitional cells that play a role in extracellular matrix production, in ulcer healing, and in pathophysiological conditions they contribute to chronic inflammation and tumor development. Na+/Ca2+ exchangers (NCX) are known to have a crucial role in Ca2+ homeostasis of contractile cells, however, no information is available concerning the role of NCX in the proliferation and migration of gastrointestinal myofibroblasts. In this study, our aim was to investigate the role of NCX in the Ca2+ homeostasis, migration, and proliferation of human gastrointestinal myofibroblasts, focusing on human gastric myofibroblasts (HGMs). We used microfluorometric measurements to investigate the intracellular Ca2+ and Na+ concentrations, PCR analysis and immunostaining to show the presence of the NCX, patch clamp for measuring NCX activity, and proliferation and migration assays to investigate the functional role of the exchanger. We showed that 53.0±8.1% of the HGMs present Ca2+ oscillations, which depend on extracellular Ca2+ and Na+, and can be inhibited by NCX inhibitors. NCX1, NCX2, and NCX3 were expressed at both mRNA and protein levels in HGMs, and they contribute to the intracellular Ca2+ and Na+ homeostasis as well, regardless of the oscillatory activity. NCX inhibitors significantly blocked the basal and insulin-like growth factor II-stimulated migration and proliferation rates of HGMs. In conclusion, we showed that NCX plays a pivotal role in regulating the Ca2+ homeostasis, migration, and proliferation of HGMs. The inhibition of NCX activity may be a potential therapeutic target in hyperproliferative gastric diseases.


Subject(s)
Cell Movement/physiology , Cell Proliferation , Myofibroblasts/cytology , Myofibroblasts/physiology , Sodium-Calcium Exchanger/metabolism , Stomach/cytology , Calcium/metabolism , Gene Expression Regulation/physiology , Humans , Sodium/metabolism , Sodium-Calcium Exchanger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL