Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 351: 119768, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100858

ABSTRACT

The most common type of environmental contamination is petroleum hydrocarbons. Sustainable and environmentally friendly treatment strategies must be explored in light of the increasing challenges of toxic and critical wastewater contamination. This paper deals with the bacteria-producing biosurfactant and their employment in the bioremediation of hydrocarbon-containing waste through a microbial fuel cell (MFC) with Pseudomonas aeruginosa (exoelectrogen) as co-culture for simultaneous power generation. Staphylococcus aureus is isolated from hydrocarbon-contaminated soil and is effective in hydrocarbon degradation by utilizing hydrocarbon (engine oil) as the only carbon source. The biosurfactant was purified using silica-gel column chromatography and characterised through FTIR and GCMS, which showed its glycolipid nature. The isolated strains are later employed in the MFCs for the degradation of the hydrocarbon and power production simultaneously which has shown a power density of 6.4 W/m3 with a 93% engine oil degradation rate. A biogenic Fe2O3 nanoparticle (NP) was synthesized using Bambusa arundinacea shoot extract for anode modification. It increased the power output by 37% and gave the power density of 10.2 W/m3. Thus, simultaneous hydrocarbon bioremediation from oil-contamination and energy recovery can be achieved effectively in MFC with modified anode.


Subject(s)
Bioelectric Energy Sources , Petroleum , Biodegradation, Environmental , Coculture Techniques , Bacteria/metabolism , Petroleum/analysis , Hydrocarbons/chemistry , Electrodes
2.
Appl Biochem Biotechnol ; 196(3): 1712-1751, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37410353

ABSTRACT

Contamination-free groundwater is considered a good source of potable water. Even in the twenty-first century, over 90 percent of the population is reliant on groundwater resources for their lives. Groundwater influences the economical state, industrial development, ecological system, and agricultural and global health conditions worldwide. However, different natural and artificial processes are gradually polluting groundwater and drinking water systems throughout the world. Toxic metalloids are one of the major sources that pollute the water system. In this review work, we have collected and analyzed information on metal-resistant bacteria along with their genetic information and remediation mechanisms of twenty different metal ions [arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), cadmium (Cd), palladium (Pd), zinc (Zn), cobalt (Co), antimony (Sb), gold (Au), silver (Ag), platinum (Pt), selenium (Se), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and uranium (U)]. We have surveyed the scientific information available on bacteria-mediated bioremediation of various metals and presented the data with responsible genes and proteins that contribute to bioremediation, bioaccumulation, and biosorption mechanisms. Knowledge of the genes responsible and self-defense mechanisms of diverse metal-resistance bacteria would help us to engineer processes involving multi-metal-resistant bacteria that may reduce metal toxicity in the environment.


Subject(s)
Arsenic , Metals, Heavy , Biodegradation, Environmental , Metals, Heavy/toxicity , Chromium , Cadmium , Bacteria/genetics , Environmental Monitoring
3.
Food Chem Toxicol ; 181: 114058, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788762

ABSTRACT

Methyl Orange, an azo dye, is a widely used colouring agent in the textile industry. The study aimed to investigate the efficiency of bioremediating bacteria in degrading methyl orange. Escherichia coli (E. coli), a Methyl Orange-degrading bacterium, was isolated from cow dung and its biochemical properties were analysed using 16S rRNA sequencing, and MALDI-TOF MS. A pre-cultured strain of Pseudomonas aeruginosa was co-cultured with E. coli in 1:1 ration in a microbial fuel cell (MFC) for simultaneous electricity production and methyl orange degradation. The degradation was combined with biological wastewater treatment at varying Methyl Orange concentrations, and the electrochemical characteristics were analysed through polarisation study, cyclic voltammetry, and electrochemical impedance spectroscopy. The impact of parameters such as anolyte pH, dye concentration, incubation time, and substrate concentrations were also studied. This study confirmed E. coli as an effective methyl orange degrading bacteria with a maximum % degradation efficiency of 98% after 48 h incubation at pH 7.0. The co-culture of isolated microorganisms at 250 mg/L of methyl orange concentration showed a maximum power density 6.5 W/m3. Further, anode modification with Fe2O3 nanoparticles on the anode surface enhanced power production to 11.2 W/m3, an increase of 4.7 W/m3.


Subject(s)
Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Coculture Techniques , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Azo Compounds/chemistry , Bacteria/metabolism , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL