Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731638

ABSTRACT

Copper-catalyzed azide-alkyne cycloaddition click (CuAAC) reaction is widely used to synthesize drug candidates and other biomolecule classes. Homogeneous catalysts, which consist of copper coordinated to a ligand framework, have been optimized for high yield and specificity of the CuAAC reaction, but CuAAC reaction with these catalysts requires the addition of a reducing agent and basic conditions, which can complicate some of the desired syntheses. Additionally, removing copper from the synthesized CuAAC-containing biomolecule is necessary for biological applications but inconvenient and requires additional purification steps. We describe here the design and synthesis of a PNN-type pincer ligand complex with copper (I) that stabilizes the copper (I) and, therefore, can act as a CuAAC catalyst without a reducing agent and base under physiologically relevant conditions. This complex was immobilized on two types of resin, and one of the immobilized catalyst forms worked well under aqueous physiological conditions. Minimal copper leaching was observed from the immobilized catalyst, which allowed its use in multiple reaction cycles without the addition of any reducing agent or base and without recharging with copper ion. The mechanism of the catalytic cycle was rationalized by density functional theory (DFT). This catalyst's utility was demonstrated by synthesizing coumarin derivatives of small molecules such as ferrocene and sugar.


Subject(s)
Alkynes , Azides , Click Chemistry , Copper , Cycloaddition Reaction , Copper/chemistry , Click Chemistry/methods , Ligands , Catalysis , Azides/chemistry , Alkynes/chemistry , Coumarins/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Molecular Structure
2.
Chembiochem ; 24(4): e202200590, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36471561

ABSTRACT

While most FDA-approved peptide drugs are cyclic, the robust cyclization chemistry of peptides and the deconvolution of cyclic peptide sequences by using tandem mass spectrometry render cyclic peptide drug discovery difficult. Here we present the successful design of cyclic peptides on solid phase that addresses both of these problems. We demonstrate that this peptide cyclization method using dichloro-s-tetrazine on solid phase allows successful cyclization of a panel of random peptide sequences with various charges and hydrophobicities. The cyclic peptides can be linearized and cleaved from the solid phase by simple UV light irradiation, and we demonstrate that accurate sequence information can be obtained for the UV-cleaved linearized peptides by using tandem mass spectrometry. The tetrazine linker used in the cyclic peptides can further be explored for inverse electron-demand Diels-Alder (IEDDA) reactions for screening or bioconjugation applications in the future.


Subject(s)
Heterocyclic Compounds , Ultraviolet Rays , Peptides/chemistry , Peptides, Cyclic/chemistry
3.
J Pept Sci ; 22(4): 196-200, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26880702

ABSTRACT

Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry, we recently developed multiple protein-catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein-based assay. Here, we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare proteolysis targeting chimeric molecules that are shown to promote the rapid degradation of Akt in live cancer cells. These novel proteolysis targeting chimeric molecules demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets.


Subject(s)
Antineoplastic Agents/pharmacology , Peptides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Catalysis , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Enzyme Activation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inhibitory Concentration 50 , Molecular Targeted Therapy , Proteolysis
4.
Angew Chem Int Ed Engl ; 54(24): 7114-9, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25925721

ABSTRACT

Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active-site-adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model.


Subject(s)
Botulinum Toxins, Type A/antagonists & inhibitors , Epitopes/metabolism , Peptides/chemistry , Amino Acid Sequence , Botulinum Toxins, Type A/drug effects , Botulinum Toxins, Type A/metabolism , Catalytic Domain , Cell Differentiation , Cells, Cultured , Click Chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epitopes/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Ligands , Microscopy, Fluorescence , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Peptides/chemical synthesis , Peptides/pharmacology , Protein Binding , Protein Structure, Tertiary
5.
Angew Chem Int Ed Engl ; 54(45): 13219-24, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26377818

ABSTRACT

We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies.


Subject(s)
Drug Design , Epitopes/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Proteins/chemistry , Ligands , Molecular Weight , Peptides, Cyclic/chemistry , Proteins/antagonists & inhibitors
6.
Methods Enzymol ; 698: 141-167, 2024.
Article in English | MEDLINE | ID: mdl-38886030

ABSTRACT

While most FDA-approved peptide drugs are cyclic, robust cyclization chemistry of peptides and the deconvolution of the cyclic peptide sequences using tandem mass spectrometry render cyclic peptide drug discovery difficult. In this chapter, the protocol for the successful synthesis of tetrazine-linked cyclic peptide library in solid phase, which shows both robust cyclization and easy sequence deconvolution, is described. The protocol for the linearization and cleavage of cyclic peptides from the solid phase by simple UV light irradiation, followed by accurate sequencing using tandem mass spectrometry, is described. We describe the troubleshooting for this dithiol bis-arylation reaction and for the successful cleavage of the aryl cyclic peptide into linear form. This method for efficient solid-phase macrocyclization can be used for the rapid production of loop-based peptides and screening for inhibition of protein-protein interactions, by using the covalent inverse electron-demand Diels Alder reaction to supplement the non-covalent interaction between a protein and its peptide binder, isolating highly selective peptides in the process.


Subject(s)
Peptide Library , Peptides, Cyclic , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Cyclization , Tandem Mass Spectrometry/methods , Solid-Phase Synthesis Techniques/methods , Heterocyclic Compounds, 1-Ring/chemistry
7.
Biosensors (Basel) ; 14(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38785721

ABSTRACT

Copper is an essential trace metal for biological processes in humans and animals. A low level of copper detection at physiological pH using fluorescent probes is very important for in vitro applications, such as the detection of copper in water or urine, and in vivo applications, such as tracking the dynamic copper concentrations inside cells. Copper homeostasis is disrupted in neurological diseases like Alzheimer's disease, and copper forms aggregates with amyloid beta (Ab42) peptide, resulting in senile plaques in Alzheimer's brains. Therefore, a selective copper detector probe that can detect amyloid beta peptide-copper aggregates and decrease the aggregate size has potential uses in medicine. We have developed a series of Cu2+-selective low fluorescent to high fluorescent tri and tetradentate dentate ligands and conjugated them with a peptide ligand to amyloid-beta binding peptide to increase the solubility of the compounds and make the resultant compounds bind to Cu2+-amyloid aggregates. The copper selective compounds were developed using chemical scaffolds known to have high affinity and selectivity for Cu2+, and their conjugates with peptides were tested for affinity and selectivity towards Cu2+. The test results were used to inform further improvement of the next compound. The final Cu2+ chelator-peptide conjugate we developed showed high selectivity for Cu2+ and high fluorescence properties. The compound bound 1:1 to Cu2+ ion, as determined from its Job's plot. Fluorescence of the ligand could be detected at nanomolar concentrations. The effect of this ligand on controlling Cu2+-Ab42 aggregation was studied using fluorescence assays and microscopy. It was found that the Cu2+-chelator-peptide conjugate efficiently reduced aggregate size and, therefore, acted as an inhibitor of Ab42-Cu2+ aggregation. Since high micromolar concentrations of Cu2+ are present in senile plaques, and Cu2+ accelerates the formation of toxic soluble aggregates of Ab42, which are precursors of insoluble plaques, the developed hybrid molecule can potentially serve as a therapeutic for Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Copper , Copper/chemistry , Amyloid beta-Peptides/metabolism , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Biosensing Techniques , Protein Aggregates , Fluorescent Dyes , Chelating Agents/pharmacology
9.
Commun Chem ; 6(1): 95, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202473

ABSTRACT

Macrocycle peptides are promising constructs for imaging and inhibiting extracellular, and cell membrane proteins, but their use for targeting intracellular proteins is typically limited by poor cell penetration. We report the development of a cell-penetrant high-affinity peptide ligand targeted to the phosphorylated Ser474 epitope of the (active) Akt2 kinase. This peptide can function as an allosteric inhibitor, an immunoprecipitation reagent, and a live cell immunohistochemical staining reagent. Two cell penetrant stereoisomers were prepared and shown to exhibit similar target binding affinities and hydrophobic character but 2-3-fold different rates of cell penetration. Experimental and computational studies resolved that the ligands' difference in cell penetration could be assigned to their differential interactions with cholesterol in the membrane. These results expand the tool kit for designing new chiral-based cell-penetrant ligands.

10.
Methods Mol Biol ; 2371: 335-354, 2022.
Article in English | MEDLINE | ID: mdl-34596857

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) is a plate-based immunological assay designed to detect and quantify peptides, proteins, antibodies, and hormones. Fluorescence polarization (FP) is a solution-phase technique that can be used to determine equilibrium dissociation constant of ligand for the protein of interest. Here we describe the protocols for different ELISAs and for Fluorescence Polarization, and how they can be used to determine relative or absolute binding of macrocyclic peptides to the target proteins. In ELISA, the target protein is used as the antigen, and the binding of antigen is quantified using cyclic peptides and enzyme-linked antibodies. In Fluorescence Polarization assays, a cyclic ligand is fluorescent dye-labeled and titrated with serial concentrations of the non-labeled target protein to determine the equilibrium dissociation constant (KD) of ligand for protein. Detailed descriptions of sample preparation and the ELISA and FP experiments are provided in this chapter.


Subject(s)
Epitopes , Antibodies , Enzyme-Linked Immunosorbent Assay , Fluorescence Polarization , Ligands , Peptides, Cyclic , Proteins
11.
J Am Chem Soc ; 133(45): 18280-8, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-21962254

ABSTRACT

We describe the use of iterative in situ click chemistry to design an Akt-specific branched peptide triligand that is a drop-in replacement for monoclonal antibodies in multiple biochemical assays. Each peptide module in the branched structure makes unique contributions to affinity and/or specificity resulting in a 200 nM affinity ligand that efficiently immunoprecipitates Akt from cancer cell lysates and labels Akt in fixed cells. Our use of a small molecule to preinhibit Akt prior to screening resulted in low micromolar inhibitory potency and an allosteric mode of inhibition, which is evidenced through a series of competitive enzyme kinetic assays. To demonstrate the efficiency and selectivity of the protein-templated in situ click reaction, we developed a novel QPCR-based methodology that enabled a quantitative assessment of its yield. These results point to the potential for iterative in situ click chemistry to generate potent, synthetically accessible antibody replacements with novel inhibitory properties.


Subject(s)
Allosteric Site/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Click Chemistry , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
12.
RSC Adv ; 11(8): 4842-4852, 2021.
Article in English | MEDLINE | ID: mdl-34377440

ABSTRACT

Peptide and peptidomimetic cyclization by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction have been used to mimic disulfide bonds, alpha helices, amide bonds, and for one-bead-one-compound (OBOC) library development. A limited number of solid-supported CuAAC cyclization methods resulting in monomeric cyclic peptide formation have been reported for specific peptide sequences, but there exists no general study on monocyclic peptide formation using CuAAC cyclization. Since several cyclic peptides identified from an OBOC CuAAC cyclized library has been shown to have important biological applications, we discuss here an efficient method of alkyne-azide 'click' catalyzed monomeric cyclic peptide formation on a solid support. The reason behind the efficiency of the method is explored. CuAAC cyclization of a peptide sequence with azidolysine and propargylglycine is performed under various reaction conditions, with different catalysts, in the presence or absence of an organic base. The results indicate that piperidine plays a critical role in the reaction yield and monomeric cycle formation by coordinating to Cu and forming Cu-ligand clusters. A previously synthesized copper compound containing piperidine, [Cu4I4(pip)4], is found to catalyze the CuAAC cyclization of monomeric peptide effectively. The use of 1.5 equivalents of CuI and the use of DMF as solvent is found to give optimal CuAAC cyclized monomer yields. The effect of the peptide sequence and peptide length on monomer formation are also investigated by varying either parameter systemically. Peptide length is identified as the determining factor for whether the monomeric or dimeric cyclic peptide is the major product. For peptides with six, seven, or eight amino acids, the monomer is the major product from CuAAC cyclization. Longer and shorter peptides on cyclization show less monomer formation. CuAAC peptide cyclization of non-optimal peptide lengths such as pentamers is affected significantly by the amino acid sequence and give lower yields.

13.
Angew Chem Int Ed Engl ; 48(27): 4944-8, 2009.
Article in English | MEDLINE | ID: mdl-19301344

ABSTRACT

Special agents for protein capture: Iterative in situ click chemistry (see scheme for the tertiary ligand screen) and the one-bead-one-compound method for the creation of a peptide library enable the fragment-based assembly of selective high-affinity protein-capture agents. The resulting ligands are water-soluble and stable chemically, biochemically, and thermally. They can be produced in gram quantities through copper(I)-catalyzed cycloaddition.


Subject(s)
Peptide Library , Proteins/chemistry , Triazoles/chemistry , Antibodies/chemistry , Catalysis , Copper/chemistry , Ligands , Peptides/chemistry , Protein Binding
15.
Nat Chem ; 7(5): 455-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25901825

ABSTRACT

Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.


Subject(s)
Point Mutation , Proto-Oncogene Proteins c-akt/metabolism , Amino Acid Sequence , Epitopes/chemistry , Ligands , Molecular Sequence Data , Protein Binding , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics
16.
Integr Biol (Camb) ; 5(1): 87-95, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22836343

ABSTRACT

Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide-alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents.


Subject(s)
Antibodies, Monoclonal/chemistry , Click Chemistry/methods , Peptide Library , Peptides/chemistry , Protein Interaction Mapping/methods , Antibodies, Monoclonal/therapeutic use , Binding Sites , Drug Design , Peptides/therapeutic use , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL