Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochemistry ; 63(6): 767-776, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38439718

ABSTRACT

Interferon regulatory factor 4 (IRF4) is a crucial transcription factor that plays a vital role in lymphocyte development, including in the fate-determining steps in terminal differentiation. It is also implicated in the development of lymphoid tumors such as multiple myeloma and adult T-cell leukemia. IRF4 can form a homodimer and multiple heterocomplexes with other transcription factors such as purine-rich box1 and activator protein 1. Each protein complex binds to specific DNA sequences to regulate a distinct set of genes. However, the precise relationship among these complex formations remains unclear. Herein, we investigated the abilities of IRF4 proteins with functional mutations in the IRF-association domain and autoinhibitory region to form complexes using luciferase reporter assays. The assays allowed us to selectively assess the activity of each complex. Our results revealed that certain IRF-association domain mutants, previously known to have impaired heterocomplex formation, maintained or even enhanced homodimer activity. This discrepancy suggests that the mutated amino acid residues selectively influence homodimer activity. Conversely, a phosphomimetic serine mutation in the autoinhibitory region displayed strong activating effects in all complexes. Furthermore, we observed that partner proteins involved in heterocomplex formation could disrupt the activity of the homodimer, suggesting a potential competition between homocomplexes and heterocomplexes. Our findings provide new insights into the mechanistic function of IRF4.


Subject(s)
Gene Expression Regulation , Interferon Regulatory Factors , Base Sequence , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mutation , Transcription Factor AP-1/metabolism , Humans , HEK293 Cells
2.
Biochem Biophys Res Commun ; 728: 150325, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38959529

ABSTRACT

RHOV and RHOU are considered atypical Rho-family small GTPases because of the existence of N- and C-terminal extension regions, abnormal GDP/GTP cycling, and post-translational modification. Particularly, RHOV and RHOU both have a proline-rich (PR) motif in the N-terminal region. It has been reported that the PR motif of RHOU interacts with GRB2, a SH3 domain-containing adaptor protein, and regulates its activity through EGF receptor signaling. However, it is unknown whether RHOV, like RHOU, interacts with SH3 domain-containing adaptor proteins. In this study, we investigated the interactions between RHOV and SH3 domain-containing adaptor proteins, including GRB2 and NCK2. The RHOV-induced serum response factor (SRF)-dependent gene transcriptional activity was attenuated in cells co-expressing either GRB2 or NCK2 compared to cells expressing RHOV alone. From the results of experiments using various gene mutants of RHOV and GRB2, it appears that the PR motif of the N-terminal region of RHOV is the crucial binding site for the SH3 domain-containing proteins. Furthermore, we found that Ser25 in the N-terminal region of RHOV is phosphorylated by PKA and that its phosphorylation is suppressed by interaction with NCK2 but not GRB2. We have found a novel regulatory mechanism for the phosphorylation of RHOV and its interaction with SH3 domain-containing adaptor proteins.


Subject(s)
Adaptor Proteins, Signal Transducing , Cyclic AMP-Dependent Protein Kinases , GRB2 Adaptor Protein , Signal Transduction , src Homology Domains , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/genetics , HEK293 Cells , Oncogene Proteins/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Phosphorylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL