Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Pathol ; 245(1): 101-113, 2018 05.
Article in English | MEDLINE | ID: mdl-29443392

ABSTRACT

A key question in precision medicine is how functional heterogeneity in solid tumours informs therapeutic sensitivity. We demonstrate that spatial characteristics of oncogenic signalling and therapy response can be modelled in precision-cut slices from Kras-driven non-small-cell lung cancer with varying histopathologies. Unexpectedly, profiling of in situ tumours demonstrated that signalling stratifies mostly according to histopathology, showing enhanced AKT and SRC activity in adenosquamous carcinoma, and mitogen-activated protein kinase (MAPK) activity in adenocarcinoma. In addition, high intertumour and intratumour variability was detected, particularly of MAPK and mammalian target of rapamycin (mTOR) complex 1 activity. Using short-term treatment of slice explants, we showed that cytotoxic responses to combination MAPK and phosphoinositide 3-kinase-mTOR inhibition correlate with the spatially defined activities of both pathways. Thus, whereas genetic drivers determine histopathology spectra, histopathology-associated and spatially variable signalling activities determine drug sensitivity. Our study is in support of spatial aspects of signalling heterogeneity being considered in clinical diagnostic settings, particularly to guide the selection of drug combinations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinogenesis/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mitogen-Activated Protein Kinases/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology
2.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562799

ABSTRACT

To uncover the intricate, chemotherapy-induced spatiotemporal remodeling of the tumor microenvironment, we conducted integrative spatial and molecular characterization of 97 high-grade serous ovarian cancer (HGSC) samples collected before and after chemotherapy. Using single-cell and spatial analyses, we identify increasingly versatile immune cell states, which form spatiotemporally dynamic microcommunities at the tumor-stroma interface. We demonstrate that chemotherapy triggers spatial redistribution and exhaustion of CD8+ T cells due to prolonged antigen presentation by macrophages, both within interconnected myeloid networks termed "Myelonets" and at the tumor stroma interface. Single-cell and spatial transcriptomics identifies prominent TIGIT-NECTIN2 ligand-receptor interactions induced by chemotherapy. Using a functional patient-derived immuno-oncology platform, we show that CD8+T-cell activity can be boosted by combining immune checkpoint blockade with chemotherapy. Our discovery of chemotherapy-induced myeloid-driven spatial T-cell exhaustion paves the way for novel immunotherapeutic strategies to unleash CD8+ T-cell-mediated anti-tumor immunity in HGSC.

3.
J Biol Chem ; 287(42): 35324-35332, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22910914

ABSTRACT

Influenza A viruses (IAVs) infect humans and cause significant morbidity and mortality. Different treatment options have been developed; however, these were insufficient during recent IAV outbreaks. Here, we conducted a targeted chemical screen in human nonmalignant cells to validate known and search for novel host-directed antivirals. The screen validated saliphenylhalamide (SaliPhe) and identified two novel anti-IAV agents, obatoclax and gemcitabine. Further experiments demonstrated that Mcl-1 (target of obatoclax) provides a novel host target for IAV treatment. Moreover, we showed that obatoclax and SaliPhe inhibited IAV uptake and gemcitabine suppressed viral RNA transcription and replication. These compounds possess broad spectrum antiviral activity, although their antiviral efficacies were virus-, cell type-, and species-specific. Altogether, our results suggest that phase II obatoclax, investigational SaliPhe, and FDA/EMEA-approved gemcitabine represent potent antiviral agents.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Deoxycytidine/analogs & derivatives , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/physiology , Influenza, Human/drug therapy , Pyrroles/pharmacology , Salicylates/pharmacology , Animals , Chlorocebus aethiops , Deoxycytidine/pharmacology , Dogs , Humans , Indoles , Influenza, Human/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Viral/biosynthesis , Vero Cells , Virus Replication , Gemcitabine
4.
Biol Open ; 11(12)2022 12 15.
Article in English | MEDLINE | ID: mdl-36355420

ABSTRACT

Preclinical tumor models with native tissue microenvironments provide essential tools to understand how heterogeneous tumor phenotypes relate to drug response. Here we present syngeneic graft models of aggressive, metastasis-prone histopathology-specific NSCLC tumor types driven by KRAS mutation and loss of LKB1 (KL): adenosquamous carcinoma (ASC) and adenocarcinoma (AC). We show that subcutaneous injection of primary KL; ASC cells results in squamous cell carcinoma (SCC) tumors with high levels of stromal infiltrates, lacking the source heterogeneous histotype. Despite forming subcutaneous tumors, intravenously injected KL;AC cells were unable to form lung tumors. In contrast, intravenous injection of KL;ASC cells leads to their lung re-colonization and lesions recapitulating the mixed AC and SCC histopathology, tumor immune suppressive microenvironment and oncogenic signaling profile of source tumors, demonstrating histopathology-selective phenotypic dominance over genetic drivers. Pan-ERBB inhibition increased survival, while selective ERBB1/EGFR inhibition did not, suggesting a role of the ERBB network crosstalk in resistance to ERBB1/EGFR. This immunocompetent NSCLC lung colonization model hence phenocopies key properties of the metastasis-prone ASC histopathology, and serves as a preclinical model to dissect therapy responses and metastasis-associated processes.


Subject(s)
Adenocarcinoma , Carcinoma, Adenosquamous , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Adenosquamous/genetics , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Adenocarcinoma/pathology , ErbB Receptors/genetics , Tumor Microenvironment
5.
Clin Cancer Res ; 28(1): 227-237, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34667030

ABSTRACT

PURPOSE: Mutations in STK11 (LKB1) occur in 17% of lung adenocarcinoma (LUAD) and drive a suppressive (cold) tumor immune microenvironment (TIME) and resistance to immunotherapy. The mechanisms underpinning the establishment and maintenance of a cold TIME in LKB1-mutant LUAD remain poorly understood. In this study, we investigated the role of the LKB1 substrate AMPK in immune evasion in human non-small cell lung cancer (NSCLC) and mouse models and explored the mechanisms involved. EXPERIMENTAL DESIGN: We addressed the role of AMPK in immune evasion in NSCLC by correlating AMPK phosphorylation and immune-suppressive signatures and by deleting AMPKα1 (Prkaa1) and AMPKα2 (Prkaa2) in a KrasG12D -driven LUAD. Furthermore, we dissected the molecular mechanisms involved in immune evasion by comparing gene-expression signatures, AMPK activity, and immune infiltration in mouse and human LUAD and gain or loss-of-function experiments with LKB1- or AMPK-deficient cell lines. RESULTS: Inactivation of both AMPKα1 and AMPKα2 together with Kras activation accelerated tumorigenesis and led to tumors with reduced infiltration of CD8+/CD4+ T cells and gene signatures associated with a suppressive TIME. These signatures recapitulate those in Lkb1-deleted murine LUAD and in LKB1-deficient human NSCLC. Interestingly, a similar signature is noted in human NSCLC with low AMPK activity. In mechanistic studies, we find that compromised LKB1 and AMPK activity leads to attenuated antigen presentation in both LUAD mouse models and human NSCLC. CONCLUSIONS: The results provide evidence that the immune evasion noted in LKB1-inactivated lung cancer is due to subsequent inactivation of AMPK and attenuation of antigen presentation.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adenocarcinoma of Lung/genetics , Animals , Antigen Presentation , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Immune Evasion , Lung Neoplasms/pathology , Mice , Tumor Microenvironment
6.
J Virol ; 84(11): 5485-93, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20357096

ABSTRACT

Flaviviruses have been shown to induce cell surface expression of major histocompatibility complex class I (MHC-I) through the activation of NF-kappaB. Using IKK1(-/-), IKK2(-/-), NEMO(-/-), and IKK1(-/-) IKK2(-/-) double mutant as well as p50(-/-) RelA(-/-) cRel(-/-) triple mutant mouse embryonic fibroblasts infected with Japanese encephalitis virus (JEV), we show that this flavivirus utilizes the canonical pathway to activate NF-kappaB in an IKK2- and NEMO-, but not IKK1-, dependent manner. NF-kappaB DNA binding activity induced upon virus infection was shown to be composed of RelA:p50 dimers in these fibroblasts. Type I interferon (IFN) production was significantly decreased but not completely abolished upon virus infection in cells defective in NF-kappaB activation. In contrast, induction of classical MHC-I (class 1a) genes and their cell surface expression remained unaffected in these NF-kappaB-defective cells. However, MHC-I induction was impaired in IFNAR(-/-) cells that lack the alpha/beta IFN receptor, indicating a dominant role of type I IFNs but not NF-kappaB for the induction of MHC-I molecules by Japanese encephalitis virus. Our further analysis revealed that the residual type I IFN signaling in NF-kappaB-deficient cells is sufficient to drive MHC-I gene expression upon virus infection in mouse embryonic fibroblasts. However, NF-kappaB could indirectly regulate MHC-I expression, since JEV-induced type I IFN expression was found to be critically dependent on it.


Subject(s)
Encephalitis Virus, Japanese/physiology , Genes, MHC Class I/genetics , Interferon Type I/metabolism , NF-kappa B/metabolism , Animals , Cells, Cultured , Fibroblasts/virology , Mice , Signal Transduction , Transcriptional Activation
7.
Sci Rep ; 9(1): 17613, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772293

ABSTRACT

To facilitate analysis of spatial tissue phenotypes, we created an open-source tool package named 'Spa-RQ' for 'Spatial tissue analysis: image Registration & Quantification'. Spa-RQ contains software for image registration (Spa-R) and quantitative analysis of DAB staining overlap (Spa-Q). It provides an easy-to-implement workflow for serial sectioning and staining as an alternative to multiplexed techniques. To demonstrate Spa-RQ's applicability, we analysed the spatial aspects of oncogenic KRAS-related signalling activities in non-small cell lung cancer (NSCLC). Using Spa-R in conjunction with ImageJ/Fiji, we first performed annotation-guided tumour-by-tumour phenotyping using multiple signalling markers. This analysis showed histopathology-selective activation of PI3K/AKT and MAPK signalling in Kras mutant murine tumours, as well as high p38MAPK stress signalling in p53 null murine NSCLC. Subsequently, Spa-RQ was applied to measure the co-activation of MAPK, AKT, and their mutual effector mTOR pathway in individual tumours. Both murine and clinical NSCLC samples could be stratified into 'MAPK/mTOR', 'AKT/mTOR', and 'Null' signature subclasses, suggesting mutually exclusive MAPK and AKT signalling activities. Spa-RQ thus provides a robust and easy to use tool that can be employed to identify spatially-distributed tissue phenotypes.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Image Processing, Computer-Assisted/methods , Lung Neoplasms/pathology , Neoplasm Proteins/analysis , Software , 3,3'-Diaminobenzidine , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/chemistry , Genes, ras , Hematoxylin , Humans , Immunoenzyme Techniques , Lung Neoplasms/chemistry , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/analysis , Phenotype , Phosphoproteins/analysis , Proof of Concept Study , Proto-Oncogene Proteins c-akt/analysis , Signal Transduction , Staining and Labeling/methods , TOR Serine-Threonine Kinases/analysis
8.
Mol Cancer Ther ; 18(10): 1863-1874, 2019 10.
Article in English | MEDLINE | ID: mdl-31320402

ABSTRACT

Most non-small cell lung cancers (NSCLC) contain nontargetable mutations, including KRAS, TP53, or STK11/LKB1 alterations. By coupling ex vivo drug sensitivity profiling with in vivo drug response studies, we aimed to identify drug vulnerabilities for these NSCLC subtypes. Primary adenosquamous carcinoma (ASC) or adenocarcinoma (AC) cultures were established from KrasG12D/+;Lkb1fl/fl (KL) tumors or AC cultures from KrasG12D/+;p53fl/fl (KP) tumors. Although p53-null cells readily propagated as conventional cultures, Lkb1-null cells required conditional reprograming for establishment. Drug response profiling revealed short-term response to MEK inhibition, yet long-term clonogenic assays demonstrated resistance, associated with sustained or adaptive activation of receptor tyrosine kinases (RTK): activation of ERBBs in KL cultures, or FGFR in AC cultures. Furthermore, pan-ERBB inhibition reduced the clonogenicity of KL cultures, which was exacerbated by combinatorial MEK inhibition, whereas combinatorial MEK and FGFR inhibition suppressed clonogenicity of AC cultures. Importantly, in vivo studies confirmed KL-selective sensitivity to pan-ERBB inhibition, which correlated with high ERBB ligand expression and activation of ERBB receptors, implying that ERBB network activity may serve as a predictive biomarker of drug response. Interestingly, in human NSCLCs, phosphorylation of EGFR or ERBB3 was frequently detected in ASCs and squamous cell carcinomas. We conclude that analysis of in situ ERBB signaling networks in conjunction with ex vivo drug response profiling and biochemical dissection of adaptive RTK activities may serve as a valid diagnostic approach to identify tumors sensitive to ERBB network inhibition.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/genetics , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation , Enzyme Activation , ErbB Receptors/metabolism , Genotype , Humans , Lung Neoplasms/drug therapy , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
9.
J Vis Exp ; (141)2018 11 29.
Article in English | MEDLINE | ID: mdl-30582602

ABSTRACT

Organotypic primary tissue explant cultures, which include precision-cut slices, represent the three-dimensional (3-D) tissue architecture as well as the multicellular interactions of native tissue. Tissue slices immediately cut from freshly resected tumors preserve spatial aspects of intratumor heterogeneity (ITH), thus making them useful surrogates of in vivo biology. Careful optimization of tissue slice preparation and cultivation conditions is fundamental for the predictive diagnostic potential of tumor slice explants. In this regard, murine models are valuable, as these provide a consistent flow of tumor material to perform replicate and reproducible experiments. This protocol describes the culturing of murine lung tumor-derived tissue slices using a rotating incubation unit, a system that enables intermittent exposure of tissues to oxygen and nutrients. Our previous work showed that the use of rotating incubation units improves the viability of tissue compared to other culture methods, particularly floating slices and stagnant filter supports. Here, we further show that slice thickness influences the viability of cultured slices, suggesting that optimization of slice thickness should be done for different tissue types. Pronounced ITH in relevant oncogenic functions, such as signaling activities, stromal cell infiltration or expression of differentiation markers, necessitates evaluation of adjacent tissue slices for the expression of markers altered by drug treatment or cultivation itself. In summary, this protocol describes the generation of murine lung tumor slices and their culture on a rotating incubation unit and demonstrates how slices should be systematically analyzed for the expression of heterogeneous tissue markers, as a prerequisite prior to drug response studies.


Subject(s)
Culture Techniques/methods , Neoplasms/pathology , Animals , Humans , Mice
10.
Cell Rep ; 18(3): 673-684, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28099846

ABSTRACT

Lung cancers exhibit pronounced functional heterogeneity, confounding precision medicine. We studied how the cell of origin contributes to phenotypic heterogeneity following conditional expression of KrasG12D and loss of Lkb1 (Kras;Lkb1). Using progenitor cell-type-restricted adenoviral Cre to target cells expressing surfactant protein C (SPC) or club cell antigen 10 (CC10), we show that Ad5-CC10-Cre-infected mice exhibit a shorter latency compared with Ad5-SPC-Cre cohorts. We further demonstrate that CC10+ cells are the predominant progenitors of adenosquamous carcinoma (ASC) tumors and give rise to a wider spectrum of histotypes that includes mucinous and acinar adenocarcinomas. Transcriptome analysis shows ASC histotype-specific upregulation of pro-inflammatory and immunomodulatory genes. This is accompanied by an ASC-specific immunosuppressive environment, consisting of downregulated MHC genes, recruitment of CD11b+ Gr-1+ tumor-associated neutrophils (TANs), and decreased T cell numbers. We conclude that progenitor cell-specific etiology influences the Kras;Lkb1-driven tumor histopathology spectrum and histotype-specific immune microenvironment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , AMP-Activated Protein Kinases , Animals , Arginase/genetics , Arginase/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Kaplan-Meier Estimate , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Phenotype , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Transcriptome , Tumor Suppressor Protein p53/metabolism , Uteroglobin/genetics , Uteroglobin/metabolism
11.
Sci Rep ; 5: 17187, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26647838

ABSTRACT

Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.


Subject(s)
Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals , Biomarkers , Cell Line, Tumor , Gene Expression , Heterografts , Humans , Immunohistochemistry/methods , Mice , Oxygen/metabolism , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction , Stress, Physiological , Tissue Array Analysis , Tissue Culture Techniques
12.
Trends Pharmacol Sci ; 33(2): 89-99, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22196854

ABSTRACT

At the global level, influenza A virus (IAV) is considered a major health threat because it causes significant morbidity. Different treatment and prevention options have been developed; however, these are insufficient in the face of recent IAV outbreaks. In particular, available antiviral agents have limited effectiveness owing to IAV resistance to these virus-directed drugs. Recent advances in understanding of IAV replication have revealed a number of cellular drug targets that counteract viral drug resistance. This review summarizes current knowledge on IAV replication with a focus on emerging cellular drug targets. Interestingly, for many of these targets, compounds for which safety testing has been carried out in humans are available. It is possible that some of these compounds, such as inhibitors of heat shock protein 90, proteasome, importin α5 or protein kinase C, will be used for treatment of IAV infections after careful evaluation in human primary cells and severely ill flu patients.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Antiviral Agents/therapeutic use , Humans , Influenza A virus/physiology , Influenza, Human/drug therapy , Influenza, Human/virology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL