ABSTRACT
We demonstrate the femtosecond-laser processing of self-suspended monolayer graphene grown by chemical vapor deposition, resulting in multipoint drilling with holes having a diameter of <100 nm. Scanning transmission electron microscopy revealed the formation of many nanopores on the laser-irradiated graphene. Furthermore, atomic-level defects as well as nanopores were found in the graphene membrane by high-resolution transmission electron microscopy, while the overall crystal structure remained intact. Raman spectroscopy showed an increase in the defect density with an increase in the number of laser shots, suggesting that the nanopore formation triggered the creation of the <100 nm holes. The approach presented herein can offer an experimental insight into the simulation of atomic dynamics in graphene under femtosecond-laser irradiation. The thorough examination of the atomic defect formation and secondary effect of surface cleaning observed in this study would help develop engineering methods for graphene and other two-dimensional materials in the future.
ABSTRACT
Determining free lime content in steelmaking slag is crucial for its safe reuse in road construction. A simple method has been recently developed to rapidly derive this value via cathodoluminescence (CL) imaging of steelmaking slag, previously quenched from 1,000°C to room temperature, according to the illuminated areas corresponding to free lime (luminescence peak at 600 nm). This quenching is required to obtain intense CL from free lime, but the mechanism of such signal enhancement is still unknown. Therefore, the present study investigated the mechanism by comparing the microstructures, CL images, and CL spectra of free lime in quenched and unquenched steelmaking slag. Large amounts of defects, including dislocations, were observed in the free lime emitting intense luminescence at 600 nm, whereas the samples without clear CL exhibited only a few defects. These results and previous studies suggest that the luminescence at 600 nm from free lime is enhanced by the CL originating from oxygen vacancies (380 nm); therefore, the enhancement of the intensity of the free lime CL peak could be attributed to the increase in the oxygen vacancies via quenching from 1,000°C to room temperature.
ABSTRACT
Metamagnetic shape memory alloys (MMSMAs) are attractive functional materials owing to their unique properties such as magnetostrain, magnetoresistance, and the magnetocaloric effect caused by magnetic-field-induced transitions. However, the energy loss during the martensitic transformation, that is, the dissipation energy, Edis , is sometimes large for these alloys, which limits their applications. In this paper, a new Pd2 MnGa Heusler-type MMSMA with an extremely small Edis and hysteresis is reported. The microstructures, crystal structures, magnetic properties, martensitic transformations, and magnetic-field-induced strain of aged Pd2 MnGa alloys are investigated. A martensitic transformation from L21 to 10M structures is seen at 127.4 K with a small thermal hysteresis of 1.3 K. The reverse martensitic transformation is induced by applying a magnetic field with a small Edis (= 0.3 J mol-1 only) and a small magnetic-field hysteresis (= 7 kOe) at 120 K. The low values of Edis and the hysteresis may be attributed to good lattice compatibility in the martensitic transformation. A large magnetic-field-induced strain of 0.26% is recorded, indicating the proposed MMSMA's potential as an actuator. The Pd2 MnGa alloy with low values of Edis and hysteresis may enable new possibilities for high-efficiency MMSMAs.
ABSTRACT
The demand for biomaterials has been increasing along with the increase in the population of elderly people worldwide. The mechanical properties and high wear resistance of metallic biomaterials make them well-suited for use as substitutes or as support for damaged hard tissues. However, unless these biomaterials also have a low Young's modulus similar to that of human bones, bone atrophy inevitably occurs. Because a low Young's modulus is typically associated with poor wear resistance, it is difficult to realize a low Young's modulus and high wear resistance simultaneously. Also, the superelastic property of shape-memory alloys makes them suitable for biomedical applications, like vascular stents and guide wires. However, due to the low recoverable strain of conventional biocompatible shape-memory alloys, the demand for a new alloy system is high. The novel body-centered-cubic cobalt-chromium-based alloys in this work provide a solution to both of these problems. The Young's modulus of <001>-oriented single-crystal cobalt-chromium-based alloys is 10-30 GPa, which is similar to that of human bone, and they also demonstrate high wear and corrosion resistance. They also exhibit superelasticity with a huge recoverable strain up to 17.0%. For these reasons, the novel cobalt-chromium-based alloys can be promising candidates for biomedical applications.
Subject(s)
Alloys , Shape Memory Alloys , Aged , Alloys/chemistry , Biocompatible Materials/chemistry , Chromium , Cobalt , Elastic Modulus , Humans , Materials Testing , Titanium/chemistryABSTRACT
Shape memory alloys recover their original shape after deformation, making them useful for a variety of specialized applications. Superelastic behavior begins at the critical stress, which tends to increase with increasing temperature for metal shape memory alloys. Temperature dependence is a common feature that often restricts the use of metal shape memory alloys in applications. We discovered an iron-based superelastic alloy system in which the critical stress can be optimized. Our Fe-Mn-Al-Cr-Ni alloys have a controllable temperature dependence that goes from positive to negative, depending on the chromium content. This phenomenon includes a temperature-invariant stress dependence. This behavior is highly desirable for a range of outer space-based and other applications that involve large temperature fluctuations.
ABSTRACT
A Ce3+-based layered perovskite compound, Dion-Jacobson type RbCeTa2O7, has been discovered for the first time by introducing only a trivalent cerium ion to form [CeTa2O7]- layers. The unique green color was experimentally and theoretically ascribed to two charge transfer transitions of ligand-to-metal O2p â Ce4f and metal-to-metal Ce4f â Ta5d.
ABSTRACT
Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.