Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Endocr J ; 68(12): 1429-1438, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34261826

ABSTRACT

α-Ketoglutarate (α-KG) also known as 2-oxoglutarate (2-OG) is an intermediate metabolite in the tricarboxylic acid (TCA) cycle and is also produced by the deamination of glutamate. It is an indispensable cofactor for a series of 2-oxoglutarate-dependent oxygenases including epigenetic modifiers such as ten-eleven translocation DNA demethylases (TETs) and JmjC domain-containing histone demethylases (JMJDs). Since these epigenetic enzymes target genomic DNA and histone in the nucleus, the nuclear concentration of α-KG would affect the levels of transcription by modulating the activity of the epigenetic enzymes. Thus, it is of great interest to measure the nuclear concentration of α-KG to elucidate the regulatory mechanism of these enzymes. Here, we report a novel fluorescence resonance energy transfer (FRET)-based biosensor with multiple nuclear localization signals (NLSs) to measure the nuclear concentration of α-KG. The probe contains the α-KG-binding GAF domain of NifA protein from Azotobacter vinelandii fused with EYFP and ECFP. Treatment of 3T3-L1 preadipocytes expressing this probe with either dimethyl-2-oxoglutarate (dimethyl-2-OG), a cell-permeable 2-OG derivative, or citrate elicited time- and dose-dependent changes in the FRET ratio, proving that this probe functions as an α-KG sensor. Measurement of the nuclear α-KG levels in the 3T3-L1 cells stably expressing the probe during adipocyte differentiation revealed that the nuclear concentration of α-KG increased in the early stage of differentiation and remained high thereafter. Thus, this nuclear-localized α-KG probe is a powerful tool for real-time monitoring of α-KG concentrations with subcellular resolution in living cells and is useful for elucidating the regulatory mechanisms of epigenetic enzymes.


Subject(s)
Biosensing Techniques , Ketoglutaric Acids , Adipocytes/metabolism , Cell Differentiation , Fluorescence Resonance Energy Transfer , Ketoglutaric Acids/metabolism , Nuclear Localization Signals
2.
BMC Pulm Med ; 19(1): 70, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30914062

ABSTRACT

BACKGROUND: Defective phagocytosis in alveolar macrophages is associated with chronic obstructive pulmonary disease (COPD). Transient receptor potential cation channel subfamily V member 2 (TRPV2), a type of nonselective cation channel pertinent to diverse physiological functions, regulates macrophage phagocytosis. However, the role of TRPV2 in COPD remains poorly understood. Here, we explored the role of TRPV2 in the development of COPD. METHODS: Macrophage TRPV2 expression and phagocytosis function were measured in MH-S cells (a murine alveolar macrophage cell line) and a cigarette smoke exposure mouse model. RESULTS: TRPV2 expression and phagocytosis function were reduced when MH-S cells were exposed to cigarette smoke extract (CSE). TRPV2 knockdown by siRNA decreased phagocytosis in MH-S cells. Consistently, TRPV2 expression was reduced in alveolar macrophages prepared from bronchoalveolar lavage samples of mice which were exposed to cigarette smoke for 2 months. In addition, the alveolar space was progressively enlarged during development in TRPV2 knockout (TRPV2KO) mice. Moreover, exposure to cigarette smoke for 2 months significantly induced alveolar space enlargement in TRPV2KO mice, but not in wild-type (WT) mice. The phagocytic function of alveolar macrophages from TRPV2KO mice was reduced, compared with macrophages from WT mice. CONCLUSIONS: TRPV2 expression is profoundly downregulated in alveolar macrophages at early time points of cigarette smoke exposure. Reduced TRPV2-mediated phagocytic function renders the lung susceptible to cigarette smoke-induced alveolar space enlargement. TRPV2 may provide a therapeutic target for COPD induced by cigarette smoke.


Subject(s)
Calcium Channels/metabolism , Lung/pathology , Macrophages, Alveolar/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , TRPV Cation Channels/metabolism , Animals , Calcium Channels/genetics , Cell Line , Cells, Cultured , Cigarette Smoking , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis , TRPV Cation Channels/genetics
3.
J Biol Chem ; 291(44): 23126-23135, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27613866

ABSTRACT

The calcium-sensing receptor (CaSR) is activated by various cations, cationic compounds, and amino acids. In the present study we investigated the effect of glucose on CaSR in HEK293 cells stably expressing human CaSR (HEK-CaSR cells). When glucose concentration in the buffer was raised from 3 to 25 mm, a rapid elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) was observed. This elevation was immediate and transient and was followed by a sustained decrease in [Ca2+]c The effect of glucose was detected at a concentration of 4 mm and reached its maximum at 5 mm 3-O-Methylglucose, a non-metabolizable analogue of glucose, reproduced the effect of glucose. Sucrose also induced an elevation of [Ca2+]c in HEK-CaSR cells. Similarly, sucralose was nearly as effective as glucose in inducing elevation of [Ca2+]c Glucose was not able to increase [Ca2+]c in the absence of extracellular Ca2+ The effect of glucose on [Ca2+]c was inhibited by NPS-2143, an allosteric inhibitor of CaSR. In addition, NPS-2143 also inhibited the [Ca2+]c responses to sucralose and sucrose. Glucose as well as sucralose decreased cytoplasmic cAMP concentration in HEK-CaSR cells. The reduction of cAMP induced by glucose was blocked by pertussis toxin. Likewise, sucralose reduced [cAMP]c Finally, glucose increased [Ca2+]c in PT-r parathyroid cells and in Madin-Darby canine kidney cells, both of which express endogenous CaSR. These results indicate that glucose acts as a positive allosteric modulator of CaSR.


Subject(s)
Glucose/metabolism , Receptors, Calcium-Sensing/chemistry , Receptors, Calcium-Sensing/metabolism , Allosteric Regulation , Calcium/metabolism , Cytoplasm/chemistry , Cytoplasm/genetics , Cytoplasm/metabolism , Glucose/analysis , HEK293 Cells , Humans , Receptors, Calcium-Sensing/genetics
4.
Biol Pharm Bull ; 38(5): 674-9, 2015.
Article in English | MEDLINE | ID: mdl-25947913

ABSTRACT

Subunits of the sweet taste receptors T1R2 and T1R3 are expressed in pancreatic ß-cells. Compared with T1R3, mRNA expression of T1R2 is considerably lower. At the protein level, expression of T1R2 is undetectable in ß-cells. Accordingly, a major component of the sweet taste-sensing receptor in ß-cells may be a homodimer of T1R3 rather than a heterodimer of T1R2/T1R3. Inhibition of this receptor by gurmarin or deletion of the T1R3 gene attenuates glucose-induced insulin secretion from ß-cells. Hence the T1R3 homodimer functions as a glucose-sensing receptor (GSR) in pancreatic ß-cells. When GSR is activated by the T1R3 agonist sucralose, elevation of intracellular ATP concentration ([ATP]i) is observed. Sucralose increases [ATP]i even in the absence of ambient glucose, indicating that sucralose increases [ATP]i not simply by activating glucokinase, a rate-limiting enzyme in the glycolytic pathway. In addition, sucralose augments elevation of [ATP]i induced by methylsuccinate, suggesting that sucralose activates mitochondrial metabolism. Nonmetabolizable 3-O-methylglucose also increases [ATP]i and knockdown of T1R3 attenuates elevation of [ATP]i induced by high concentration of glucose. Collectively, these results indicate that the T1R3 homodimer functions as a GSR; this receptor is involved in glucose-induced insulin secretion by activating glucose metabolism probably in mitochondria.


Subject(s)
Adenosine Triphosphate/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Receptors, G-Protein-Coupled/metabolism , Sucrose/analogs & derivatives , Taste , 3-O-Methylglucose/metabolism , Animals , Cell Line , Cyclic AMP/metabolism , Glucose/pharmacology , Insulin Secretion , Islets of Langerhans/metabolism , Mice , Mitochondria/metabolism , Sucrose/pharmacology , Sweetening Agents/pharmacology
5.
Liver Int ; 34(7): 1057-67, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24119135

ABSTRACT

BACKGROUND & AIMS: Conophylline (CnP) is a vinca alkaloid purified from a tropical plant and inhibits activation of pancreatic stellate cells. We investigated the effect of CnP on hepatic stellate cells (HSC) in vitro. We also examined whether CnP attenuates hepatic fibrosis in vivo. METHOD: We examined the effect of CnP on the expression of α-smooth muscle actin (α-SMA) and collagen-1, DNA synthesis and apoptosis in rat HSC and Lx-2 cells. We also examined the effect of CnP on hepatic fibrosis induced by thioacetamide (TAA). RESULTS: In rat HSC and Lx-2 cells, CnP reduced the expression of α-SMA and collagen-1. CnP inhibited DNA synthesis induced by serum. CnP also promoted activation of caspase-3 and induced apoptosis as assessed by DNA ladder formation and TUNEL assay. In contrast, CnP did not induce apoptosis in AML12 cells. We then examined the effect of CnP on TAA-induced cirrhosis. In TAA-treated rats, the surface of the liver was irregular and multiple nodules were observed. Histologically, formation of pseudolobules surrounded by massive fibrous tissues was observed. When CnP was administered together with TAA, the surface of the liver was smooth and liver fibrosis was markedly inhibited. Collagen content was significantly reduced in CnP-treated liver. CONCLUSION: Conophylline suppresses HSC and induces apoptosis in vitro. CnP also attenuates formation of the liver fibrosis induced by TAA in vivo.


Subject(s)
Hepatic Stellate Cells/drug effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Thioacetamide/adverse effects , Vinca Alkaloids/pharmacology , Actins/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Caspase 3/metabolism , Cell Line , Collagen Type I/metabolism , DNA Replication/drug effects , Immunohistochemistry , In Situ Nick-End Labeling , Rats , Vinca Alkaloids/therapeutic use
6.
Endocr J ; 61(2): 119-31, 2014.
Article in English | MEDLINE | ID: mdl-24200979

ABSTRACT

A homodimer of taste type 1 receptor 3 (T1R3) functions as a sweet taste-sensing receptor in pancreatic ß-cells. This receptor is activated by various sweet molecules including sugars such as glucose. To determine the role of this receptor in glucose-induced insulin secretion, we addressed whether or not this receptor modulates glucose metabolism in MIN6 cells. We measured changes in intracellular ATP ([ATP]i) in MIN6 cells expressing luciferase. Sucralose, an agonist of T1R3, induced immediate and sustained elevation of [ATP]i in the presence of 5.5 mM glucose. The effect of sucralose was dose-dependent and, at 5 mM, was greater than that induced by 25 mM glucose. In contrast, carbachol, GLP-1 or high concentration of potassium did not reproduce the sucralose action. Sucralose facilitated the increase in [ATP]i induced by a mitochondrial fuel methylsuccinate, and potentiated glucose-induced elevation of [ATP]i. Administration of a non-metabolizable glucose analogue, 3-O-methylglucose, which acts as an agonist of T1R3, induced a small and transient increase in [ATP]i. 3-O-Methylglucose augmented elevation of [ATP]i induced by methylsuccinate, and also enhanced glucose-induced increase in [ATP]i. Knock down of T1R3 by using shRNA attenuated [ATP]i-response to high concentration of glucose and also reduced the glucose-induced insulin secretion. These results indicate that activation of the homodimer of T1R3 facilitates the metabolic pathway in mitochondria and augments ATP production. The results obtained by using 3-O-methylglucose suggest that glucose, by acting on the homodimer of T1R3, promotes its own metabolism.


Subject(s)
Adenosine Triphosphate/metabolism , Glucose/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/physiology , 3-O-Methylglucose/pharmacology , Animals , Cell Line , Glucose/pharmacology , Insulin Secretion , Islets of Langerhans/drug effects , Mice , RNA, Small Interfering/pharmacology , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/genetics , Succinates/pharmacology , Sucrose/analogs & derivatives , Sucrose/pharmacology
7.
Handb Exp Pharmacol ; 222: 247-72, 2014.
Article in English | MEDLINE | ID: mdl-24756709

ABSTRACT

Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. This channel is activated by heat (>52 °C), various ligands, and mechanical stresses. In most of the cells, a large portion of TRPV2 is located in the endoplasmic reticulum under unstimulated conditions. Upon stimulation of the cells with phosphatidylinositol 3-kinase-activating ligands, TRPV2 is translocated to the plasma membrane and functions as a cation channel. Mechanical stress may also induce translocation of TRPV2 to the plasma membrane. The expression of TRPV2 is high in some types of cells including neurons, neuroendocrine cells, immune cells involved in innate immunity, and certain types of cancer cells. TRPV2 may modulate various cellular functions in these cells.


Subject(s)
Calcium Channels/metabolism , TRPV Cation Channels/metabolism , Animals , Calcium Channels/chemistry , Calcium Channels/deficiency , Calcium Channels/genetics , Cell Membrane Permeability , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Ion Channel Gating , Membrane Potentials , Mice, Knockout , Phenotype , Signal Transduction , TRPV Cation Channels/chemistry , TRPV Cation Channels/deficiency , TRPV Cation Channels/genetics
8.
Endocr J ; 60(10): 1191-206, 2013.
Article in English | MEDLINE | ID: mdl-23933592

ABSTRACT

The sweet taste receptor is expressed in the taste bud and is activated by numerous sweet molecules with diverse chemical structures. It is, however, not known whether these sweet agonists induce a similar cellular response in target cells. Using MIN6 cells, a pancreatic ß-cell line expressing endogenous sweet taste receptor, we addressed this question by monitoring changes in cytoplasmic Ca2+ ([Ca2+]i) and cAMP ([cAMP]i) induced by four sweet taste receptor agonists. Glycyrrhizin evoked sustained elevation of [Ca2+]i but [cAMP]i was not affected. Conversely, an artificial sweetener saccharin induced sustained elevation of [cAMP]i but did not increase [Ca2+]i. In contrast, sucralose and acesulfame K induced rapid and sustained increases in both [Ca2+]i and [cAMP]i. Although the latter two sweeteners increased [Ca2+]i and [cAMP]i, their actions were not identical: [Ca2+]i response to sucralose but not acesulfame K was inhibited by gurmarin, an antagonist of the sweet taste receptor which blocks the gustducin-dependent pathway. In addition, [Ca2+]i response to acesulfame K but not to sucralose was resistant to a Gq inhibitor. These results indicate that four types of sweeteners activate the sweet taste receptor differently and generate distinct patterns of intracellular signals. The sweet taste receptor has amazing multimodal functions producing multiple patterns of intracellular signals.


Subject(s)
Signal Transduction/drug effects , Sweetening Agents/pharmacology , Taste Buds/physiology , Animals , Calcium/metabolism , Cell Line, Tumor , Cyclic AMP/metabolism , Cytoplasm/metabolism , Glycyrrhizic Acid/pharmacology , Insulin-Secreting Cells/metabolism , Mice , Plant Proteins/pharmacology , Saccharin/pharmacology , Sucrose/analogs & derivatives , Taste/drug effects , Taste Buds/drug effects , Thiazines/pharmacology
9.
Endocr J ; 56(2): 235-43, 2009.
Article in English | MEDLINE | ID: mdl-19023157

ABSTRACT

While the physiological role for calcium in the insulin action on glucose transport has been disputed, it was reassessed in a recent study by using a calcum chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl) ester (BAPTA-AM). Although BAPTA has been widely used to study the role for calcium in a variety of cell functions, it has also been suggested to have properties unrelated to the calcium chelating activity. Here, we investigated the effects of BAPTA and dimethyl BAPTA on the cytoskeletons in 3T3-L1 adipocytes. Both calcium chelators were successfully loaded in 3T3-L1 adipocytes and inhibited endothelin-1-induced cytosolic calcium elevation. Confocal fluorescence microscopy revealed that BAPTA and dimethyl BAPTA caused profound depolymerization of the microtubules without affecting the cortical actin filaments in 3T3-L1 adipocytes. Biochemical quantification also showed that BAPTA and dimethyl BAPTA significantly decreased the amount of polymerized tubulin but had little effect on filamentous actin. Consistent with these results, GLUT4-positive perinuclear compartments were dispersed throughout the cytoplasm in BAPTA- or dimethyl BAPTA-loaded adipocytes. Intriguingly, these calcium chelators did not disrupt the microtubules in undifferentiated preadipocytes. The microtubule-depolymerizing property of BAPTA and dimethyl BAPTA is unrelated to calcium chelation, since the microtubules were resistant to depletion of cytosolic calcium by using a calcium ionophore A23187. Insulin-stimulated glucose transport was not affected by cytosolic calcium depletion with A23187, but significantly inhibited with BAPTA and dimethyl BAPTA to the extent similar to that with nocodazole. BAPTA and its derivatives should be used with caution in studies of cytoskeleton-related cell functions.


Subject(s)
Calcium/metabolism , Egtazic Acid/analogs & derivatives , Microtubules/drug effects , 3T3-L1 Cells , Actins/drug effects , Actins/metabolism , Adipocytes/drug effects , Animals , Calcimycin/pharmacology , Chelating Agents/pharmacology , Cytoskeleton/drug effects , Egtazic Acid/pharmacology , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Mice , Microscopy, Confocal , Tubulin/drug effects , Tubulin/metabolism
10.
FEBS J ; 274(13): 3392-404, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17553062

ABSTRACT

The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth.


Subject(s)
Glucose Transport Proteins, Facilitative/metabolism , Glucose/pharmacokinetics , Hexanones/metabolism , Hydrocarbons, Chlorinated/metabolism , 3T3-L1 Cells , Animals , Biological Transport , Calcium/metabolism , Dictyostelium/enzymology , Enzyme Inhibitors/pharmacology , Fibroblasts/metabolism , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Mice , Models, Biological , Models, Chemical , Protein Transport
11.
PLoS One ; 12(5): e0176841, 2017.
Article in English | MEDLINE | ID: mdl-28472098

ABSTRACT

We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.


Subject(s)
Adipogenesis/physiology , Chromogranins/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Microtubules/physiology , Receptors, G-Protein-Coupled/physiology , rho GTP-Binding Proteins/metabolism , 3T3-L1 Cells , Animals , Fluorescence Resonance Energy Transfer , Mice
13.
Physiol Rep ; 3(2)2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25677550

ABSTRACT

The effect of focal mechanical stress on the localization of TRPV2 was investigated in HT1080 cells, where only mRNA for TRPV2 was detected among members of the TRPV channel family. Mechanical stress was applied by adding negative pressure using a glass pipette. When focal mechanical stress was applied, subplasma membrane Ca(2+) concentration ([Ca(2+)]s) was increased beneath the pipette, which propagated throughout the cell. The increase in [Ca(2+)]s was blocked by ruthenium red or by knocking down TRPV2. Elevation of [Ca(2+)]s was not observed by removal of extracellular Ca(2+), by an addition of a phosphatidylinositol 3-kinase inhibitor LY29034, and by transfection of dominant-negative Rac. In cells expressing GFP-TRPV2 and RFP-Akt, administration of focal mechanical stress induced accumulation of GFP-TRPV2 beneath the pipette. RFP-Akt was also accumulated to the same site. Gadolinium blocked the elevation of [Ca(2+)]s induced by focal mechanical stress and also attenuated accumulation of TRPV2. When GFP-TRPV1, GFP-TRPV3, GFP-TRPV4, GFP-TRPV5, or GFP-TRPV6 was transfected ectopically in HT1080 cells, only GFP-TRPV4 was accumulated beneath the pipette in response to the focal mechanical stress. These results indicate that TRPV2 translocates to the site receiving a focal mechanical stress and increases [Ca(2+)]s.

14.
PLoS One ; 10(12): e0144053, 2015.
Article in English | MEDLINE | ID: mdl-26630567

ABSTRACT

Glucose is a primary stimulator of insulin secretion in pancreatic ß-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse ß-cells, glucose induced triphasic changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]c); glucose evoked an immediate elevation of [Ca(2+)]c, which was followed by a decrease in [Ca(2+)]c, and after a certain lag period it induced large oscillatory elevations of [Ca(2+)]c. Initial rapid peak and subsequent reduction of [Ca(2+)]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca(2+), glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca(2+)]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor.


Subject(s)
Calcium/metabolism , Cyclic AMP/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Receptors, Cell Surface/metabolism , Animals , Cell Line , Cytoplasm/metabolism , Insulin/metabolism , Mice
15.
J Diabetes Investig ; 6(3): 256-63, 2015 May.
Article in English | MEDLINE | ID: mdl-25969708

ABSTRACT

Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic ß-cells.

16.
Endocrinol Metab (Seoul) ; 29(1): 12-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24741449

ABSTRACT

The sweet taste receptors present in the taste buds are heterodimers comprised of T1R2 and T1R3. This receptor is also expressed in pancreatic ß-cells. When the expression of receptor subunits is determined in ß-cells by quantitative reverse transcription polymerase chain reaction, the mRNA expression level of T1R2 is extremely low compared to that of T1R3. In fact, the expression of T1R2 is undetectable at the protein level. Furthermore, knockdown of T1R2 does not affect the effect of sweet molecules, whereas knockdown of T1R3 markedly attenuates the effect of sweet molecules. Consequently, a homodimer of T1R3 functions as a receptor sensing sweet molecules in ß-cells, which we designate as sweet taste-sensing receptors (STSRs). Various sweet molecules activate STSR in ß-cells and augment insulin secretion. With regard to intracellular signals, sweet molecules act on STSRs and increase cytoplasmic Ca(2+) and/or cyclic AMP (cAMP). Specifically, when an STSR is stimulated by one of four different sweet molecules (sucralose, acesulfame potassium, sodium saccharin, or glycyrrhizin), distinct signaling pathways are activated. Patterns of changes in cytoplasmic Ca(2+) and/or cAMP induced by these sweet molecules are all different from each other. Hence, sweet molecules activate STSRs by acting as biased agonists.

17.
Mol Cell Endocrinol ; 394(1-2): 70-9, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25017733

ABSTRACT

Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals.


Subject(s)
Calcium/metabolism , Duodenum/drug effects , Glucagon-Like Peptide 1/metabolism , Signal Transduction/drug effects , Sweetening Agents/pharmacology , Benzene Derivatives/pharmacology , Calmodulin/genetics , Calmodulin/metabolism , Cell Line, Tumor , Cyclic AMP/metabolism , Duodenum/cytology , Duodenum/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Glucagon-Like Peptide 1/biosynthesis , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/pharmacology , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Plasma Membrane Calcium-Transporting ATPases/antagonists & inhibitors , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasma Membrane Calcium-Transporting ATPases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Saccharin/chemistry , Saccharin/pharmacology , Sucrose/analogs & derivatives , Sucrose/chemistry , Sucrose/pharmacology , Sweetening Agents/chemistry , Thiazines/chemistry , Thiazines/pharmacology
18.
Cell Calcium ; 51(2): 186-93, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22226146

ABSTRACT

The present study was conducted to investigate localization and function of TRPV2 channel in a mouse macrophage cell line, TtT/M87. We infected an adenovirus vector encoding TRPV2 tagged with c-Myc in the extracellular domain. Immunoreactivity of c-Myc epitope exposed to the cell surface formed a ring structure, which was colocalized with markers of the podosome, namely ß-integrin, paxillin and Pyk2. The ring structure was also observed in TRPV2-GFP-expressing cells using total internal reflection fluorescent microscopy. Addition of formyl-Met-Leu-Phe (fMLP) increased the number of podosome and increased the intensity of the TRPV2 signal associated with the podosome. Measurement of subplasmalenmal free calcium concentration ([Ca(2+)](pm)) revealed that [Ca(2+)](pm) was elevated around the podosome. fMLP further increased [Ca(2+)](pm) in this region, which was abolished by a TRPV2 inhibitor ruthenium red. Phosphorylated Pyk2 was detected in fMLP-treated cells, and knockdown of TRPV2 reduced the expression of phospho-Pyk2. Introduction of dominant-negative Pyk2 or knockdown of TRPV2 increased the number of podosome. Conversely, elevation of [Ca(2+)](pm) by the addition of ionomycin reduced the number of podosome. These results indicate that TRPV2 is localized abundantly in the podosome and increases [Ca(2+)](pm) by the podosome. The elevation of [Ca(2+)](pm) is critical to regulate assembly of the podosome.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Macrophages/metabolism , TRPV Cation Channels/metabolism , Adenoviridae , Animals , Calcium Channels/genetics , Cell Membrane/genetics , Focal Adhesion Kinase 2/genetics , Focal Adhesion Kinase 2/metabolism , HEK293 Cells , Humans , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Macrophages/cytology , Mice , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Paxillin/genetics , Paxillin/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Transport/drug effects , Protein Transport/genetics , TRPV Cation Channels/genetics
19.
Diabetes ; 58(1): 174-84, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18984736

ABSTRACT

OBJECTIVE: Calcium-permeable cation channel TRPV2 is expressed in pancreatic beta-cells. We investigated regulation and function of TRPV2 in beta-cells. RESEARCH DESIGN AND METHODS: Translocation of TRPV2 was assessed in MIN6 cells and cultured mouse beta-cells by transfecting TRPV2 fused to green fluorescent protein or TRPV2 containing c-Myc tag in the extracellular domain. Calcium entry was assessed by monitoring fura-2 fluorescence. RESULTS: In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a beta-cell line derived from islets obtained from a beta-cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulin-induced translocation of TRPV2 was observed in cultured mouse beta-cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. CONCLUSIONS: TRPV2 is regulated by insulin and is involved in the autocrine action of this hormone on beta-cells.


Subject(s)
Calcium Channels/physiology , Calcium/metabolism , Insulin-Secreting Cells/metabolism , Insulin/pharmacology , TRPV Cation Channels/physiology , Adenoviridae/genetics , Animals , Biological Transport/drug effects , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Genetic Vectors , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Mice , Protein Transport/drug effects , Reverse Transcriptase Polymerase Chain Reaction , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
20.
PLoS One ; 4(4): e5106, 2009.
Article in English | MEDLINE | ID: mdl-19352508

ABSTRACT

BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+) ([Ca(2+)](c)) and cAMP ([cAMP](c)) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+)](c). The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+)](c) response. The effect of sucralose on [Ca(2+)](c) was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q) inhibitor. Sucralose also induced sustained elevation of [cAMP](c), which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+) and cAMP-dependent mechanisms.


Subject(s)
Calcium/metabolism , Cyclic AMP/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Taste , Animals , Base Sequence , Cell Line , Cytoplasm/metabolism , DNA Primers , Enzyme Activation , Insulin Secretion , Mice , Protein Kinase C/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sucrose/analogs & derivatives , Sucrose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL