Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cell ; 174(5): 1143-1157.e17, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30078703

ABSTRACT

Viruses employ elaborate strategies to coopt the cellular processes they require to replicate while simultaneously thwarting host antiviral responses. In many instances, how this is accomplished remains poorly understood. Here, we identify a protein, F17 encoded by cytoplasmically replicating poxviruses, that binds and sequesters Raptor and Rictor, regulators of mammalian target of rapamycin complexes mTORC1 and mTORC2, respectively. This disrupts mTORC1-mTORC2 crosstalk that coordinates host responses to poxvirus infection. During infection with poxvirus lacking F17, cGAS accumulates together with endoplasmic reticulum vesicles around the Golgi, where activated STING puncta form, leading to interferon-stimulated gene expression. By contrast, poxvirus expressing F17 dysregulates mTOR, which localizes to the Golgi and blocks these antiviral responses in part through mTOR-dependent cGAS degradation. Ancestral conservation of Raptor/Rictor across eukaryotes, along with expression of F17 across poxviruses, suggests that mTOR dysregulation forms a conserved poxvirus strategy to counter cytosolic sensing while maintaining the metabolic benefits of mTOR activity.


Subject(s)
Cytosol/chemistry , Poxviridae/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/metabolism , Carrier Proteins/metabolism , Cell Line , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Homeostasis , Humans , Immunity, Innate , Interferons/metabolism , Kinetics , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
EMBO J ; 39(20): e104870, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32896909

ABSTRACT

While the microtubule end-binding protein, EB1 facilitates early stages of HIV-1 infection, how it does so remains unclear. Here, we show that beyond its effects on microtubule acetylation, EB1 also indirectly contributes to infection by delivering the plus-end tracking protein (+TIP), cytoplasmic linker protein 170 (CLIP170) to the cell periphery. CLIP170 bound to intact HIV-1 cores or in vitro assembled capsid-nucleocapsid complexes, while EB1 did not. Moreover, unlike EB1 and several other +TIPs, CLIP170 enhanced infection independently of effects on microtubule acetylation. Capsid mutants and imaging revealed that CLIP170 bound HIV-1 cores in a manner distinct from currently known capsid cofactors, influenced by pentamer composition or curvature. Structural analyses revealed an EB-like +TIP-binding motif within the capsid major homology region (MHR) that binds SxIP motifs found in several +TIPs, and variability across this MHR sequence correlated with the extent to which different retroviruses engage CLIP170 to facilitate infection. Our findings provide mechanistic insights into the complex roles of +TIPs in mediating early stages of retroviral infection, and reveal divergent capsid-based EB1 mimicry across retroviral species.


Subject(s)
Capsid/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Host Microbial Interactions , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neoplasm Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Host Microbial Interactions/genetics , Humans , Macaca , Microtubule-Associated Proteins/genetics , Molecular Mimicry , Neoplasm Proteins/genetics , Protein Binding , RNA, Small Interfering
3.
J Virol ; 97(6): e0049923, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37219433

ABSTRACT

Fasciculation and elongation factor zeta 1 (FEZ1), a multifunctional kinesin-1 adaptor, binds human immunodeficiency virus type 1 (HIV-1) capsids and is required for efficient translocation of virus particles to the nucleus to initiate infection. However, we recently found that FEZ1 also acts as a negative regulator of interferon (IFN) production and interferon-stimulated gene (ISG) expression in primary fibroblasts and human immortalized microglial cell line clone 3 (CHME3) microglia, a natural target cell type for HIV-1 infection. This raises the question of whether depleting FEZ1 negatively affects early HIV-1 infection through effects on virus trafficking or IFN induction or both. Here, we address this by comparing the effects of FEZ1 depletion or IFN-ß treatment on early stages of HIV-1 infection in different cell systems with various IFN-ß responsiveness. In either CHME3 microglia or HEK293A cells, depletion of FEZ1 reduced the accumulation of fused HIV-1 particles around the nucleus and suppressed infection. In contrast, various doses of IFN-ß had little to no effect on HIV-1 fusion or the translocation of fused viral particles to the nucleus in either cell type. Moreover, the potency of IFN-ß's effects on infection in each cell type reflected the level of induction of MxB, an ISG that blocks subsequent stages of HIV-1 nuclear import. Collectively, our findings demonstrate that loss of FEZ1 function impacts infection through its roles in two independent processes, as a direct regulator of HIV-1 particle transport and as a regulator of ISG expression. IMPORTANCE As a hub protein, fasciculation and elongation factor zeta 1 (FEZ1) interacts with a range of other proteins involved in various biological processes, acting as an adaptor for the microtubule (MT) motor kinesin-1 to mediate outward transport of intracellular cargoes, including viruses. Indeed, incoming HIV-1 capsids bind to FEZ1 to regulate the balance of inward/outward motor activity to ensure net forward movement toward the nucleus to initiate infection. However, we recently showed that FEZ1 depletion also induces interferon (IFN) production and interferon-stimulated gene (ISG) expression. As such, it remains unknown whether modulating FEZ1 activity affects HIV-1 infection through its ability to regulate ISG expression or whether FEZ1 functions directly, or both. Using distinct cell systems that separate the effects of IFN and FEZ1 depletion, here we demonstrate that the kinesin adaptor FEZ1 regulates HIV-1 translocation to the nucleus independently of its effects on IFN production and ISG expression.


Subject(s)
Capsid , HIV-1 , Humans , Adaptor Proteins, Signal Transducing/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Fasciculation/metabolism , Gene Expression , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Interferons/metabolism , Kinesins/metabolism , Nerve Tissue Proteins/metabolism , Peptide Elongation Factors/genetics
4.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34686593

ABSTRACT

Many viruses directly engage and require the dynein-dynactin motor-adaptor complex in order to transport along microtubules (MTs) to the nucleus and initiate infection. HIV type 1 (HIV-1) exploits dynein, the dynein adaptor BICD2, and core dynactin subunits but unlike several other viruses, does not require dynactin-1 (DCTN1). The underlying reason for HIV-1's variant dynein engagement strategy and independence from DCTN1 remains unknown. Here, we reveal that DCTN1 actually inhibits early HIV-1 infection by interfering with the ability of viral cores to interact with critical host cofactors. Specifically, DCTN1 competes for binding to HIV-1 particles with cytoplasmic linker protein 170 (CLIP170), one of several MT plus-end tracking proteins (+TIPs) that regulate the stability of viral cores after entry into the cell. Outside of its function as a dynactin subunit, DCTN1 also functions as a +TIP that we find sequesters CLIP170 from incoming particles. Deletion of the Zinc knuckle (Zn) domain in CLIP170 that mediates its interactions with several proteins, including DCTN1, increased CLIP170 binding to virus particles but failed to promote infection, further suggesting that DCTN1 blocks a critical proviral function of CLIP170 mediated by its Zn domain. Our findings suggest that the unique manner in which HIV-1 binds and exploits +TIPs to regulate particle stability leaves them vulnerable to the negative effects of DCTN1 on +TIP availability and function, which may in turn have driven HIV-1 to evolve away from DCTN1 in favor of BICD2-based engagement of dynein during early infection.


Subject(s)
Dynactin Complex/physiology , HIV Infections/physiopathology , HIV Infections/virology , HIV-1/physiology , Host Microbial Interactions/physiology , Microtubule-Associated Proteins/physiology , Neoplasm Proteins/physiology , Binding, Competitive , Cell Line , Dynactin Complex/antagonists & inhibitors , Dynactin Complex/genetics , Gene Knockdown Techniques , HEK293 Cells , HIV-1/pathogenicity , HeLa Cells , Humans , Jurkat Cells , Microglia/virology , Microtubule-Associated Proteins/chemistry , Models, Biological , Neoplasm Proteins/chemistry , Protein Domains , RNA, Small Interfering/genetics
5.
Retrovirology ; 18(1): 19, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34229718

ABSTRACT

Microtubules (MTs) form a filamentous array that provide both structural support and a coordinated system for the movement and organization of macromolecular cargos within the cell. As such, they play a critical role in regulating a wide range of cellular processes, from cell shape and motility to cell polarization and division. The array is radial with filament minus-ends anchored at perinuclear MT-organizing centers and filament plus-ends continuously growing and shrinking to explore and adapt to the intracellular environment. In response to environmental cues, a small subset of these highly dynamic MTs can become stabilized, acquire post-translational modifications and act as specialized tracks for cargo trafficking. MT dynamics and stability are regulated by a subset of highly specialized MT plus-end tracking proteins, known as +TIPs. Central to this is the end-binding (EB) family of proteins which specifically recognize and track growing MT plus-ends to both regulate MT polymerization directly and to mediate the accumulation of a diverse array of other +TIPs at MT ends. Moreover, interaction of EB1 and +TIPs with actin-MT cross-linking factors coordinate changes in actin and MT dynamics at the cell periphery, as well as during the transition of cargos from one network to the other. The inherent structural polarity of MTs is sensed by specialized motor proteins. In general, dynein directs trafficking of cargos towards the minus-end while most kinesins direct movement toward the plus-end. As a pathogenic cargo, HIV-1 uses the actin cytoskeleton for short-range transport most frequently at the cell periphery during entry before transiting to MTs for long-range transport to reach the nucleus. While the fundamental importance of MT networks to HIV-1 replication has long been known, recent work has begun to reveal the underlying mechanistic details by which HIV-1 engages MTs after entry into the cell. This includes mimicry of EB1 by capsid (CA) and adaptor-mediated engagement of dynein and kinesin motors to elegantly coordinate early steps in infection that include MT stabilization, uncoating (conical CA disassembly) and virus transport toward the nucleus. This review discusses recent advances in our understanding of how MT regulators and their associated motors are exploited by incoming HIV-1 capsid during early stages of infection.


Subject(s)
Capsid/metabolism , Cytoskeleton/virology , HIV-1/metabolism , Host-Pathogen Interactions , Microtubules/virology , Biological Transport , Capsid Proteins/metabolism , Cytoskeleton/metabolism , Humans
6.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: mdl-32376623

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) exploits a number of specialized microtubule (MT) plus-end tracking proteins (commonly known as +TIPs) to induce the formation of stable microtubules soon after virus entry and promote early stages of infection. However, given their functional diversity, the nature of the +TIPs involved and how they facilitate HIV-1 infection remains poorly understood. Here, we identify cytoplasmic linker-associated protein 2 (CLASP2), a +TIP that captures cortical MT plus ends to enable filament stabilization, as a host factor that enables HIV-1 to induce MT stabilization and promote early infection in natural target cell types. Using fixed- and live-cell imaging in human microglia cells, we further show that CLASP2 is required for the trafficking of incoming HIV-1 particles carrying wild-type (WT) envelope. Moreover, both WT CLASP2 and a CLASP2 mutant lacking its C-terminal domain, which mediates its interaction with several host effector proteins, bind to intact HIV-1 cores or in vitro-assembled capsid-nucleocapsid (CA-NC) complexes. However, unlike WT CLASP2, the CLASP2 C-terminal mutant is unable to induce MT stabilization or promote early HIV-1 infection. Our findings identify CLASP2 as a new host cofactor that utilizes distinct regulatory domains to bind incoming HIV-1 particles and facilitate trafficking of incoming viral cores through MT stabilization.IMPORTANCE While microtubules (MTs) have long been known to be important for delivery of incoming HIV-1 cores to the nucleus, how the virus engages and exploits these filaments remains poorly understood. Our previous work revealed the importance of highly specialized MT regulators that belong to a family called plus-end tracking proteins (+TIPs) in facilitating early stages of infection. These +TIPs perform various functions, such as engaging cargos for transport or engaging peripheral actin to stabilize MTs, suggesting several family members have the potential to contribute to infection in different ways. Here, we reveal that cytoplasmic linker-associated protein 2 (CLASP2), a key regulator of cortical capture and stabilization of MTs, interacts with incoming HIV-1 particles, and we identify a distinct C-terminal domain in CLASP2 that promotes both MT stabilization and early infection. Our findings identify a new +TIP acting as a host cofactor that facilitates early stages of viral infection.


Subject(s)
Cell Nucleus/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Microglia/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/genetics , Cell Nucleus/virology , HIV Infections/genetics , HIV-1/genetics , Humans , Jurkat Cells , Microglia/virology , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Microtubules/virology , Mutation , Protein Domains
7.
Proc Natl Acad Sci U S A ; 114(33): E6932-E6941, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760985

ABSTRACT

Diaphanous (Dia)-related formins (DRFs) coordinate cytoskeletal remodeling by controlling actin nucleation and microtubule (MT) stabilization to facilitate processes such as cell polarization and migration; yet the full extent of their activities remains unknown. Here, we uncover two discrete roles and functions of DRFs during early human immunodeficiency virus type 1 (HIV-1) infection. Independent of their actin regulatory activities, Dia1 and Dia2 facilitated HIV-1-induced MT stabilization and the intracellular motility of virus particles. However, DRFs also bound in vitro assembled capsid-nucleocapsid complexes and promoted the disassembly of HIV-1 capsid (CA) shell. This process, also known as "uncoating," is among the most poorly understood stages in the viral lifecycle. Domain analysis and structure modeling revealed that regions of Dia2 that bound viral CA and mediated uncoating as well as early infection contained coiled-coil domains, and that these activities were genetically separable from effects on MT stabilization. Our findings reveal that HIV-1 exploits discrete functions of DRFs to coordinate critical steps in early infection and identifies Dia family members as regulators of the poorly understood process of HIV-1 uncoating.


Subject(s)
Carrier Proteins/metabolism , HIV-1/metabolism , Virus Uncoating , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Biological Transport , Capsid/metabolism , Carrier Proteins/genetics , Cell Line , Cell Line, Tumor , Formins , HEK293 Cells , HIV-1/physiology , Humans , Jurkat Cells , Microscopy, Confocal , Microtubules/metabolism , Time-Lapse Imaging/methods
8.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28615197

ABSTRACT

Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.


Subject(s)
Host-Pathogen Interactions , Microtubules/metabolism , Virion/metabolism , Virus Physiological Phenomena , Biological Transport , Gene Expression Regulation
9.
Proc Natl Acad Sci U S A ; 110(45): 18268-73, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145430

ABSTRACT

Although microtubules (MTs) frequently form highly dynamic networks, subsets of MTs become stabilized in response to environmental cues and function as specialized tracks for vesicle and macromolecular trafficking. MT stabilization is controlled by specialized plus-end tracking proteins (+TIPs) whose accumulation at the MT ends is facilitated by the end-binding protein, EB1, and regulated by various signaling pathways. As cargoes themselves, viruses are dependent on MTs for their intracellular movement. Although many viruses affect MT organization, the potential contribution of MT stabilization by +TIPs to infection remains unknown. Here we show that early in infection of primary human fibroblasts, herpes simplex virus type 1 (HSV-1) disrupts the centrosome, the primary MT organizing center in many cell types. As infection progresses HSV-1 induces the formation of stable MT subsets through inactivation of glycogen synthase kinase 3beta by the viral Ser/Thr kinase, Us3. Stable MT formation is reduced in cells infected with Us3 mutants and those stable MTs that form cluster around the trans-Golgi network. Downstream of glycogen synthase kinase 3beta, cytoplasmic linker-associated proteins (CLASPs), specialized host +TIPs that control MT formation at the trans-Golgi network and cortical capture, are specifically required for virus-induced MT stabilization and HSV-1 spread. Our findings demonstrate the biological importance of +TIPs to viral infection and suggest that HSV-1 has evolved to exploit the trans-Golgi network as an alternate MT organizing center to facilitate virus spread.


Subject(s)
Herpesvirus 1, Human/enzymology , Microtubule-Associated Proteins/metabolism , Microtubules/physiology , trans-Golgi Network/metabolism , Biological Transport/physiology , Blotting, Western , Cell Line, Tumor , Fluorescent Antibody Technique , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , RNA, Small Interfering/genetics
11.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37043190

ABSTRACT

While HIV-1 infection of macrophages plays a major role in viral persistence and pathogenesis, how HIV-1 transfers from infected T cells to macrophages remains elusive. In this issue, Mascarau et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202205103) demonstrate how macrophage polarization drives their ability to fuse with HIV-1 infected T cells via the CD81/RhoA-ROCK/Myosin axis.


Subject(s)
HIV Infections , Macrophages , Humans , Macrophages/virology , T-Lymphocytes/virology , Cell Polarity , Cell Fusion
12.
Nat Commun ; 14(1): 4227, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454116

ABSTRACT

HIV-1 replication in macrophages and microglia involves intracellular assembly and budding into modified subsets of multivesicular bodies (MVBs), which support both viral persistence and spread. However, the cellular factors that regulate HIV-1's vesicular replication remain poorly understood. Recently, amyloid precursor protein (APP) was identified as an inhibitor of HIV-1 replication in macrophages and microglia via an unknown mechanism. Here, we show that entry of HIV-1 Gag into MVBs is blocked by the amyloidogenic C-terminal fragment of APP, "C99", but not by the non-amyloidogenic product, "C83". To counter this, Gag promotes multi-site ubiquitination of C99 which controls both exocytic sorting of MVBs and further processing of C99 into toxic amyloids. Processing of C99, entry of Gag into MVBs and release of infectious virus could be suppressed by expressing ubiquitination-defective C99 or by γ-secretase inhibitor treatment, suggesting that APP's amyloidogenic pathway functions to sense and suppress HIV-1 replication in macrophages and microglia.


Subject(s)
Amyloid beta-Protein Precursor , HIV-1 , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , HIV-1/metabolism , Amyloid Precursor Protein Secretases/metabolism , Ubiquitination , Virus Replication , Amyloid beta-Peptides/metabolism
13.
Adv Virus Res ; 115: 87-134, 2023.
Article in English | MEDLINE | ID: mdl-37173066

ABSTRACT

Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.


Subject(s)
Virus Diseases , Viruses , Humans , Microtubules/metabolism , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure
14.
Proc Natl Acad Sci U S A ; 106(33): 14040-5, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-19667186

ABSTRACT

Neurons are one of the few cell types in the human body that do not support HIV type-1 (HIV-1) replication. Although the lack of key receptors is a major obstacle to infection, studies suggest that additional functions inhibit virus replication to explain the exquisite resistance of neurons to HIV-1. However, specific neuronal factors that may explain this resistance remain to be discovered. In a screen for antiviral factors using a fibroblast line chemically mutagenized and selected for resistance to retroviral infection, we recently identified induction of rat FEZ1 (fasciculation and elongation protein zeta-1), a brain-specific protein, as the cause of this resistance. When exogenously expressed in nonneuronal cell lines rat FEZ1 blocked nuclear entry of retroviral DNA. Here, we demonstrate that among human brain cells, neurons naturally express high levels of FEZ1 compared to astrocytes or microglia cells and are correspondingly less susceptible to infection with pseudotyped HIV-1 that bypasses receptor-mediated viral entry. Demonstrating that endogenous FEZ1 was functionally important in the resistance of neurons to HIV-1 infection, siRNA-mediated knockdown of endogenous FEZ1 increased the infectivity of neurons while sensitive brain cell types like microglia became more resistant upon FEZ1 overexpression. In addition, FEZ1 expression was not induced in response to IFN treatment. As such, in contrast to other widely expressed, IFN-inducible antiviral factors, FEZ1 appears to represent a unique neuron-specific determinant of cellular susceptibility to infection in a cell type that is naturally resistant to HIV-1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Brain/metabolism , HIV Infections/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Astrocytes/metabolism , Cell Line, Tumor , DNA, Viral/metabolism , Fibroblasts/metabolism , HIV-1/metabolism , Humans , RNA Interference , RNA, Small Interfering/metabolism , Rats
15.
FEBS J ; 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36527282

ABSTRACT

Due to its central role in cell biology, the cytoskeleton is a key regulator of viral infection, influencing nearly every step of the viral life cycle. In this review, we will discuss the role of two key components of the cytoskeleton, namely the actin and microtubule networks in early HIV-1 infection. We will discuss key contributions to processes ranging from the attachment and entry of viral particles at the cell surface to their arrival and import into the nucleus and identify areas where further research into this complex relationship may yield new insights into HIV-1 pathogenesis.

16.
Cell Rep ; 38(7): 110396, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172151

ABSTRACT

Fasciculation and elongation protein zeta-1 (FEZ1) is a multifunctional kinesin adaptor involved in processes ranging from neurodegeneration to retrovirus and polyomavirus infection. Here, we show that, although modulating FEZ1 expression also impacts infection by large DNA viruses in human microglia, macrophages, and fibroblasts, this broad antiviral phenotype is associated with the pre-induction of interferon-stimulated genes (ISGs) in a STING-independent manner. We further reveal that S58, a key phosphorylation site in FEZ1's kinesin regulatory domain, controls both binding to, and the nuclear-cytoplasmic localization of, heat shock protein 8 (HSPA8), as well as ISG expression. FEZ1- and HSPA8-induced changes in ISG expression further involved changes in DNA-dependent protein kinase (DNA-PK) accumulation in the nucleus. Moreover, phosphorylation of endogenous FEZ1 at S58 was reduced and HSPA8 and DNA-PK translocated to the nucleus in cells stimulated with DNA, suggesting that FEZ1 is a regulatory component of the recently identified HSPA8/DNA-PK innate immune pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation , HSC70 Heat-Shock Proteins/metabolism , Interferons/pharmacology , Nerve Tissue Proteins/metabolism , Animals , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chlorocebus aethiops , DNA Viruses/physiology , DNA-Activated Protein Kinase/metabolism , Female , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Immunity, Innate/drug effects , Interferon Regulatory Factors/metabolism , Membrane Proteins/metabolism , Microglia/drug effects , Microglia/metabolism , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Binding/drug effects , Protein Transport/drug effects , Vero Cells
17.
J Virol ; 84(17): 8990-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20573829

ABSTRACT

In a yeast two-hybrid screen for cellular factors that could interact with human immunodeficiency virus type 1 (HIV-1) Gag protein, we identified PDZD8 and confirmed the interaction by coimmunoprecipitation (co-IP). PDZD8 overexpression promoted the initiation of reverse transcription and increased infection by pseudotyped retroviruses independent of the route of viral entry, while transient knockdown of endogenous levels decreased HIV-1 infection. A mutant of PDZD8 lacking a predicted coiled-coil domain in its Gag-interacting region failed to bind Gag and promote HIV-1 infection, identifying the domain of PDZD8 required for mediating these effects. As such, we identify PDZD8 as a novel positive mediator of retroviral infection.


Subject(s)
Carrier Proteins/metabolism , HIV Infections/metabolism , HIV-1/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Adaptor Proteins, Signal Transducing , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , HIV Infections/virology , HIV-1/genetics , Humans , PDZ Domains , Protein Binding , Protein Structure, Tertiary , Two-Hybrid System Techniques , gag Gene Products, Human Immunodeficiency Virus/genetics
18.
Curr Opin Immunol ; 19(4): 402-7, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17707624

ABSTRACT

In the past decade, several lines of evidence have highlighted the importance of the host cell cytoskeleton in various stages of retroviral infection. To complete their lifecycle, retroviruses must penetrate the outer barrier of the cell membrane, and viral cores containing the viral genome must traverse the cytoplasm to the nucleus and then viral gene products must make the journey back to the cell surface in order to release new progeny. The presence of a dense cytoskeletal network and organelles in the cytoplasm creates an environment that greatly impedes diffusion of macromolecules such as viruses. As such, retroviruses have evolved means to hijack actin as well as microtubule cytoskeletal networks that regulate macromolecular movement within the host cell. Developing studies are discovering several host and viral factors that play important roles in retroviral trafficking.


Subject(s)
Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Retroviridae Infections/virology , Retroviridae/physiology , Animals , HIV/physiology , HIV Infections/metabolism , HIV Infections/virology , Humans , Microtubules/metabolism , Protein Transport , Retroviridae Infections/metabolism , Virus Assembly , Virus Integration , Virus Replication , nef Gene Products, Human Immunodeficiency Virus/metabolism
19.
J Virol ; 82(9): 4665-70, 2008 May.
Article in English | MEDLINE | ID: mdl-18305045

ABSTRACT

We recently identified the cytoskeletal regulatory protein moesin as a novel gene that inhibits retroviral replication prior to reverse transcription by downregulation of stable microtubule formation. Here, we provide evidence that overexpression of ezrin, another closely related ezrin-radixin-moesin (ERM) family member, also blocks replication of both murine leukemia viruses and human immunodeficiency virus type 1 (HIV-1) in Rat2 fibroblasts before reverse transcription, while knockdown of endogenous ezrin increases the susceptibility of human cells to HIV-1 infection. Together, these results suggest that ERM proteins may be important determinants of retrovirus susceptibility through negative regulation of stable microtubule networks.


Subject(s)
Cytoskeletal Proteins/administration & dosage , Cytoskeletal Proteins/physiology , Microtubules/drug effects , Retroviridae Infections/drug therapy , Animals , Disease Susceptibility/therapy , HIV-1/drug effects , Humans , Leukemia Virus, Murine/drug effects , Membrane Proteins , Mice , Microfilament Proteins , RNA, Small Interfering/pharmacology , Rats , Transfection , Virus Replication/drug effects
20.
Trends Microbiol ; 27(1): 39-50, 2019 01.
Article in English | MEDLINE | ID: mdl-30033343

ABSTRACT

Being dependent upon host transport systems to navigate the cytoplasm, viruses have evolved various strategies to manipulate cytoskeletal functions. Generally, viruses use the actin cytoskeleton to control entry and short-range transport at the cell periphery and exploit microtubules (MTs) for longer-range cytosolic transport, in some cases to reach the nucleus. While earlier studies established the fundamental importance of these networks to successful infection, the mechanistic details and true extent to which viruses usurp highly specialized host cytoskeletal regulators and motor adaptors is only beginning to emerge. This review outlines our current understanding of how cytoskeletal regulation contributes specifically to the early stages of viral infection, with a primary focus on retroviruses and herpesviruses as examples of recent advances in this area.


Subject(s)
Cytoskeleton/metabolism , Host-Pathogen Interactions , Virus Diseases/pathology , Virus Diseases/virology , Virus Internalization , Virus Release , Virus Replication , Biological Transport
SELECTION OF CITATIONS
SEARCH DETAIL