Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Glycobiology ; 34(3)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38127648

ABSTRACT

Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.


Subject(s)
Influenza A virus , Humans , Animals , Swine , Influenza A virus/metabolism , Ducks/metabolism , Chickens/metabolism , Tandem Mass Spectrometry , Glycopeptides/metabolism , Polysaccharides/metabolism , Mammals/metabolism
2.
Avian Pathol ; : 1-11, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38784976

ABSTRACT

RESEARCH HIGHLIGHTS: New variant IBDV which emerged in Egypt clustered with Chinese nVarIBDV.nVarIBDV spread subclinically across a wide geographic area.Mutation at 321 represents capsid's most exposed part, a defining feature.Antigenically modified vvIBDV still circulating in Egypt with typical lesions.

3.
J Gen Virol ; 104(4)2023 04.
Article in English | MEDLINE | ID: mdl-37018118

ABSTRACT

The neuraminidase inhibitor (NAI) oseltamivir is stockpiled globally as part of influenza pandemic preparedness. However, oseltamivir carboxylate (OC) resistance develops in avian influenza virus (AIV) infecting mallards exposed to environmental-like OC concentrations, suggesting that environmental resistance is a real concern. Herein we used an in vivo model to investigate if avian influenza H1N1 with the OC-resistant mutation NA-H274Y (51833/H274Y) as compared to the wild-type (wt) strain (51833 /wt) could transmit from mallards, which would potentially be exposed to environmentally contaminated environments, to and between chickens, thus posing a potential zoonotic risk of antiviral-resistant AIV. Regardless of whether the virus had the OC-resistant mutation or not, chickens became infected both through experimental infection, and following exposure to infected mallards. We found similar infection patterns between 51833/wt and 51833/H274Y such that, one chicken inoculated with 51833/wt and three chickens inoculated with 51833/H274Y were AIV positive in oropharyngeal samples more than 2 days consecutively, indicating true infection, and one contact chicken exposed to infected mallards was AIV positive in faecal samples for 3 consecutive days (51833/wt) and another contact chicken for 4 consecutive days (51833/H274Y). Importantly, all positive samples from chickens infected with 51833/H274Y retained the NA-H274Y mutation. However, none of the virus strains established sustained transmission in chickens, likely due to insufficient adaptation to the chicken host. Our results demonstrate that an OC-resistant avian influenza virus can transmit from mallards and replicate in chickens. NA-H274Y does not constitute a barrier to interspecies transmission per se, as the resistant virus did not show reduced replicative capacity compared to the wild-type counterpart. Thus, responsible use of oseltamivir and surveillance for resistance development is warranted to limit the risk of an OC-resistant pandemic strain.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Humans , Animals , Oseltamivir/pharmacology , Chickens , Influenza A Virus, H1N1 Subtype/genetics , Antiviral Agents/pharmacology , Influenza A virus/genetics , Ducks , Neuraminidase/genetics , Drug Resistance, Viral , Influenza, Human/drug therapy
4.
J Virol ; 91(23)2017 12 01.
Article in English | MEDLINE | ID: mdl-28931674

ABSTRACT

The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation.IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported. Here, the principal compatibility of the two subtypes is shown by forcing the reassortment between copassaged H5N1 und H9N2 viruses in embryonated chicken eggs. The resulting reassortant viruses displayed a wide range of pathogenicity including attenuated phenotypes in chickens, but did not show enhanced zoonotic propensities in the ferret model.


Subject(s)
Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Reassortant Viruses , Animals , Chickens , Egypt/epidemiology , Ferrets , Genetic Fitness , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Orthomyxoviridae Infections/epidemiology , Phenotype , Phylogeny , Zoonoses
5.
Emerg Infect Dis ; 23(6): 1048-1051, 2017 06.
Article in English | MEDLINE | ID: mdl-28518040
6.
J Gen Virol ; 98(6): 1169-1173, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28590242

ABSTRACT

In Egypt, zoonotic A/goose/Guangdong/1/96 (gs/GD-like) highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1.2 is entrenched in poultry populations and has co-circulated with low-pathogenic avian influenza virus H9N2 of the G1 lineage since 2010. Here, the impact of H9N2 infection or vaccination on the course of consecutive infection with a lethal Egyptian HPAIV H5N1 is studied. Three-week-old chickens were infected with H9N2 or vaccinated with inactivated H9N2 or H5N1 antigens and challenged three weeks later by an HPAIV H5N1. Interestingly, pre-infection of chickens with H9N2 decreased the oral excretion of H5N1 to levels that were comparable to those of H5N1-immunized chickens, but vaccination with inactivated H9N2 did not. H9N2 pre-infection modulated but did not conceal clinical disease by HPAIV H5N1. By contrast, homologous H5 vaccination abolished clinical syndromic surveillance, although vaccinated clinical healthy birds were capable of spreading the virus.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Animals , Chickens , Egypt , Influenza Vaccines/administration & dosage , Influenza in Birds/immunology , Survival Analysis , Treatment Outcome , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Virus Shedding
7.
Arch Virol ; 161(7): 1963-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27068161

ABSTRACT

Since 2006, in Egypt, highly pathogenic avian influenza virus (HPAIV) H5N1 has established endemic status in poultry. Bayesian evolutionary analysis sampling trees suggested an introduction date in the third quarter of 2005. Evolutionary dynamics using Bayesian analysis showed that H5N1 viruses of clade 2.2.1.1 evolved at higher rates than those of clade 2.2.1.2. Bayesian skyline plot analysis of the HA gene of 840 and NA gene of 401 Egyptian H5N1 viruses from 2006-2015 identified two waves of viral population expansion correlating with the stepwise emergence of the 2.2.1.1 variant lineage in 2008 and with the newly emerging 2.2.1.2 cluster in late 2014. H5N1 infections in human hosts in 2014-2015 were statistically linked to a contemporary poultry outbreak.


Subject(s)
Evolution, Molecular , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Poultry Diseases/virology , Animals , Disease Outbreaks , Egypt/epidemiology , Humans , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Phylogeny , Poultry , Poultry Diseases/epidemiology , Viral Proteins/genetics
8.
Arch Virol ; 161(12): 3583-3587, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27604121

ABSTRACT

Infectious bronchitis virus (IBV) continues to circulate worldwide, with a significant impact on the poultry industry and affecting both vaccinated and unvaccinated flocks. Several studies have focused on the hypervariable regions (HVRs) of the spike gene (S1); however, genetic and bioinformatics studies of the whole S1 gene are limited. In this study, the whole S1 gene of five Egyptian IBVs was genetically analyzed. Phylogenetic analysis revealed that the Egyptian IBVs are clustered within two distinct groups: the classic group resembling the GI-1 genotype (vaccine strains) and the variant group (field strains) of the GI-23 genotype. The variant genotype was divided into two distinct subgroups (Egy/var I and Egy/var II) resembling the Israeli variants IS/1494 and IS885 strain, respectively. Significant amino acid sequence differences between the two subgroups, especially in the epitope sites, were identified. A deletion at position 63 and an I69A/S substitution mutation associated with virus tropism were detected in the receptor-binding sites. The deduced amino acid sequence of HVRs of the variant subgroups indicated different genetic features in comparison to the classic vaccine group (H120 lineage). The Egyptian variant IBVs also contained additional N-glycosylation sites compared to the classical viruses. Recombination analysis gave evidence for distinct patterns of origin by recombination throughout the S1 gene, suggesting that the recent virus IBV-EG/1586CV-2015 emerged as a recombinant of two viruses from the variant groups Egy/var I and Egy/var II, providing another example of intra-genotypic recombination among IBVs and the first example of recombination within the GI-23 genotype. Our data suggest that both mutation and recombination may be contributing to the emergence of IBV variants. Moreover, we found that the commercially used vaccines are genotypically distant from the circulating field strains. Hence, continuous follow-up of the current vaccine strategy is highly recommended for better control and prevention of infectious bronchitis virus in the poultry sector in Egypt.


Subject(s)
Coronavirus Infections/veterinary , Evolution, Molecular , Infectious bronchitis virus/genetics , Poultry Diseases/virology , Recombination, Genetic , Spike Glycoprotein, Coronavirus/genetics , Animals , Chickens , Cluster Analysis , Coronavirus Infections/virology , Egypt , Genotype , Infectious bronchitis virus/isolation & purification , Mutation , Phylogeny , Sequence Homology
9.
Virus Genes ; 52(6): 872-876, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27448682

ABSTRACT

Large-scale sequence analysis of Matrix (M) gene and its coding proteins M1 and M2 was performed for 274 highly pathogenic avian influenza viruses H5N1 circulated in Egypt from 2006 to 2016. The aim is to study the amantadine-resistant markers distribution and to estimate the evolutionary rate. 246 viruses were obtained from the Global Initiative on Sharing All Influenza Data base, and 28 additional viruses were sequenced. Maximum clade credibility (MCC) phylogenetic tree revealed that the M gene has evolved into two different lineages. Estimated Evolutionary analysis showed that the M2 protein possessed higher evolutionary rates (3.45 × 10-3) than the M1 protein (2.73 × 10-3). M gene encoding proteins revealed significant markers described to be associated with host tropism and increase in virulence: V15I, N30D, and T121A in M1 and L55F in M2 protein. Site analysis focusing attention on the temporal and host distribution of the amantadine-resistant markers was carried out and showed that vast majority of the M2 amantadine-resistant variants of clade 2.2.1.1 (n = 90) is N31 marker, in addition to G27 (n = 7), A27 (n = 5), I27 (n = 1), and S30 (n = 1). In 2010-2011, amantadine resistant frequency increased considerably resembling more than half of the resistant variants. Notably, all viruses of clade 2.2.1.1 possessed amantadine-resistant marker. However, almost all current circulating viruses in Egypt of clade 2.2.1.2 from 2014 to 2016 did not carry any amantadine-resistant markers.


Subject(s)
Amantadine/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Viral , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/epidemiology , Influenza, Human/virology , Viral Matrix Proteins/genetics , Animals , Chickens , Egypt/epidemiology , Genotype , History, 20th Century , History, 21st Century , Humans , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza, Human/history , Models, Molecular , Phylogeny , Protein Conformation , Viral Matrix Proteins/chemistry
10.
J Gen Virol ; 96(11): 3212-3222, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26350163

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 have continued to perpetuate with divergent genetic variants in poultry within Asia since 2003. Further dissemination of Asian-derived H5 HPAIVs to Europe, Africa and, most recently, to the North American continent has occurred. We report an outbreak of HPAIV H5N1 among falcons kept for hunting and other wild bird species bred as falcon prey in Dubai, United Arab Emirates, during the autumn of 2014. The causative agent was identified as avian influenza virus subtype H5N1, clade 2.3.2.1c, by genetic and phylogenetic analyses. High mortality in infected birds was in accordance with systemic pathomorphological and histological alterations in affected falcons. Genetic analysis showed the HPAIV H5N1 of clade 2.3.2.1c is a reassortant in which the PB2 segment was derived from an Asian-origin H9N2 virus lineage. The Dubai H5N1 viruses were closely related to contemporary H5N1 HPAIVs from Nigeria, Burkina-Faso, Romania and Bulgaria. Median-joining network analysis of 2.3.2.1c viruses revealed that the Dubai outbreak was an episode of a westward spread of these viruses on a larger scale from unidentified Asian sources. The incursion into Dubai, possibly via infected captive hunting falcons returning from hunting trips to central Asian countries, preceded outbreaks in Nigeria and other West African countries. The alarmingly enhanced geographical mobility of clade 2.3.2.1.c and clade 2.3.4.4 viruses may represent another wave of transcontinental dissemination of Asian-origin HPAIV H5 viruses, such as the outbreak at Qinghai Lake caused by clade 2.2 ('Qinghai' lineage) in 2005.


Subject(s)
Falconiformes/virology , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/virology , Animals , Animals, Wild/virology , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/epidemiology , Molecular Sequence Data , Phylogeny , United Arab Emirates/epidemiology
11.
Sci Rep ; 13(1): 4476, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934147

ABSTRACT

Exchange of viral segments between one or more influenza virus subtypes can contribute to a shift in virulence and adaptation to new hosts. Among several influenza subtypes, H9N2 is widely circulating in poultry populations worldwide and has the ability to infect humans. Here, we studied the reassortant compatibility between chicken H9N2 with N1-N9 gene segments of wild bird origin, either with an intact or truncated stalk. Naturally occurring amino acid deletions in the NA stalk of the influenza virus can lead to increased virulence in both mallard ducks and chickens. Our findings show extended genetic compatibility between chicken H9Nx gene segments and the wild-bird NA with and without 20 amino acid stalk deletion. Replication kinetics in avian, mammalian and human cell lines revealed that parental chH9N2 and rH9N6 viruses with intact NA-stalk replicated significantly better in avian DF1 cells compared to human A549 cells. After introducing a stalk deletion, an enhanced preference for replication in mammalian and human cell lines could be observed for rH9N2Δ(H6), rH9N6Δ and rH9N9Δ compared to the parental chH9N2 virus. This highlights the potential emergence of novel viruses with variable phenotypic traits, warranting the continuous monitoring of H9N2 and co-circulating subtypes in avian hosts.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Humans , Poultry , Chickens , Neuraminidase/genetics , Neuraminidase/metabolism , Animals, Wild , Amino Acids/metabolism , Phylogeny , Mammals
12.
Microbiol Spectr ; 11(4): e0258622, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37358408

ABSTRACT

Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Humans , Animals , Ducks , Chickens , Immunity, Innate
13.
Vaccines (Basel) ; 11(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37766075

ABSTRACT

Controlling avian influenza viruses (AIVs) is mainly based on culling of the infected bird flocks or via the implementation of inactivated vaccines in countries where AIVs are considered to be endemic. Over the last decade, several avian influenza virus subtypes, including highly pathogenic avian influenza (HPAI) H5N1 clade 2.2.1.2, H5N8 clade 2.3.4.4b and the recent H5N1 clade 2.3.4.4b, have been reported among poultry populations in Egypt. This demanded the utilization of a nationwide routine vaccination program in the poultry sector. Antigenic differences between available avian influenza vaccines and the currently circulating H5Nx strains were reported, calling for an updated vaccine for homogenous strains. In this study, three H5Nx vaccines were generated by utilizing the reverse genetic system: rgH5N1_2.3.4.4, rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2. Further, the immunogenicity and the cross-reactivity of the generated inactivated vaccines were assessed in the chicken model against a panel of homologous and heterologous H5Nx HPAIVs. Interestingly, the rgH5N1_2.3.4.4 induced high immunogenicity in specific-pathogen-free (SPF) chicken and could efficiently protect immunized chickens against challenge infection with HPAIV H5N1_2.3.4.4, H5N8_2.3.4.4 and H5N1_2.2.1.2. In parallel, the rgH5N1_2.2.1.2 could partially protect SPF chickens against infection with HPAIV H5N1_2.3.4.4 and H5N8_2.3.4.4. Conversely, the raised antibodies to rgH5N1_2.3.4.4 could provide full protection against HPAIV H5N1_2.3.4.4 and HPAIV H5N8_2.3.4.4, and partial protection (60%) against HPAIV H5N1_2.2.1.2. Compared to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2 vaccines, chickens vaccinated with rgH5N1_2.3.4.4 showed lower viral shedding following challenge infection with the predefined HPAIVs. These data emphasize the superior immunogenicity and cross-protective efficacy of the rgH5N1_2.3.4.4 in comparison to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2.

14.
Pathogens ; 12(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678438

ABSTRACT

Wild migratory birds have the capability to spread avian influenza virus (AIV) over long distances as well as transmit the virus to domestic birds. In this study, swab and tissue samples were obtained from 190 migratory birds during close surveillance in Egypt in response to the recent outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus. The collected samples were tested for a variety of AIV subtypes (H5N1, H9N2, H5N8, and H6N2) as well as other pathogens such as NDV, IBV, ILT, IBDV, and WNV. Among all of the tested samples, the HPAI H5N1 virus was found in six samples; the other samples were found to be negative for all of the tested pathogens. The Egyptian HPAI H5N1 strains shared genetic traits with the HPAI H5N1 strains that are currently being reported in Europe, North America, Asia, and Africa in 2021-2022. Whole genome sequencing revealed markers associated with mammalian adaption and virulence traits among different gene segments, similar to those found in HPAI H5N1 strains detected in Europe and Africa. The detection of the HPAI H5N1 strain of clade 2.3.4.4b in wild birds in Egypt underlines the risk of the introduction of this strain into the local poultry population. Hence, there is reason to be vigilant and continue epidemiological and molecular monitoring of the AIV in close proximity to the domestic-wild bird interface.

15.
Avian Dis ; 56(4 Suppl): 849-57, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23402103

ABSTRACT

Widespread prevalence of avian influenza H9N2 subtype in the Middle East region and its detection in Egypt in quail in early summer 2011 added another risk factor to the Egyptian poultry industry in addition to highly pathogenic H5N1 subtype. This situation increases the need for further surveillance and investigation of H9N2 viruses in commercial and household chickens. This work describes detection and genetic characterization of recently isolated H9N2 viruses from chicken flocks. Parallel detection and genetic characterization of H5N1 viruses from infections in poultry has also been done to compare the prevalence of the two subtypes in close geographic locations in Egypt. Phylogenetic analysis of the HA gene showed that the Egyptian isolates of H9N2 were grouped together within the quail/Hong Kong/G1/97-like lineage, similar to the circulating viruses in the Middle East, with very close phylogeny to the Israeli viruses. The prevalence of H5N1 viruses from cases recorded in poultry in the nearby areas revealed a marked decrease in disease incidence in commercial broilers but an increased incidence in household birds. The genetic characterization of the H5N1 viruses indicated predominance of the classic 2.2.1 subclade, with evolution of new viruses and no detection for the variant 2.2.1.1 subclade. The cocirculation of the two subtypes, H5N1 and H9N2, of avian influenza may affect the limit of spread and the epizootiologic pattern of the infections for both subtypes, especially when different vaccination and biosecurity approaches are applied in the field level.


Subject(s)
Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/virology , Animals , Chickens , Egypt/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Phylogeny , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
17.
Viruses ; 14(5)2022 05 11.
Article in English | MEDLINE | ID: mdl-35632771

ABSTRACT

Since it was first discovered, the low pathogenic avian influenza (LPAI) H9N2 subtype has established linages infecting the poultry population globally and has become one of the most prevalent influenza subtypes in domestic poultry. Several different variants and genotypes of LPAI H9N2 viruses have been reported in Egypt, but little is known about their pathogenicity and how they have evolved. In this study, four different Egyptian LPAI H9N2 viruses were genetically and antigenically characterized and compared to representative H9N2 viruses from G1 lineage. Furthermore, the pathogenicity of three genetically distinct Egyptian LPAI H9N2 viruses was assessed by experimental infection in chickens. Whole-genome sequencing revealed that the H9N2 virus of the Egy-2 G1-B lineage (pigeon-like) has become the dominant circulating H9N2 genotype in Egypt since 2016. Considerable variation in virus shedding at day 7 post-infections was detected in infected chickens, but no significant difference in pathogenicity was found between the infected groups. The rapid spread and emergence of new genotypes of the influenza viruses pinpoint the importance of continuous surveillance for the detection of novel reassortant viruses, as well as monitoring the viral evolution.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Chickens , Genetic Variation , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Virulence
18.
Transbound Emerg Dis ; 69(2): 849-863, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33955204

ABSTRACT

Newcastle disease (ND), caused by avian orthoavulavirus type-1 (NDV), is endemic in poultry in many regions of the world and causes continuing outbreaks in poultry populations. In the Middle East, genotype XXI, used to be present in poultry in Egypt but has been replaced by genotype VII. We investigated whether virus evolution contributed to superseding and focussed on the antigenic sites within the hemagglutinin-neuraminidase (HN) spike protein. Full-length sequences of an NDV genotype VII isolate currently circulating in Egypt was compared to a genotype XXI isolate that was present as co-infection with vaccine-type viruses (II) in a historical virus isolated in 2011. Amino acid differences in the HN glycoprotein for both XXI and VII viruses amounted to 11.7% and 11.9%, respectively, compared to the La Sota vaccine type. However, mutations within the globular head (aa 126-570), bearing relevant antigenic sites, were underrepresented (a divergence of 8.8% and 8.1% compared to 22.4% and 25.6% within the protein domains encompassing cytoplasmic tail, transmembrane part and stalk regions (aa 1-125) for genotypes XXI and VII, respectively). Nevertheless, reaction patterns of HN-specific monoclonal antibodies inhibiting receptor binding revealed differences between vaccine-type viruses and genotype XXI and VII viruses for epitopes located in the head domain. Accordingly, compared to Egyptian vaccine-type isolates and the La Sota vaccine reference strain, single aa substitutions in 6 of 10 described neutralizing epitopes of HN were found. However, the same alterations in neutralization sensitive epitopes were present in old genotype XXI as well as in newly emerged genotype VII isolates. In addition, isolates were indistinguishable by polyclonal chicken sera raised against different genotypes including vaccine viruses. These findings suggest that factors other than antigenic differences within the HN protein account for facilitating the spread of genotype VII versus genotype XXI viruses in Egypt.


Subject(s)
Newcastle Disease , Newcastle disease virus , Animals , Antigenic Drift and Shift , Chickens , Egypt/epidemiology , Genomics , Genotype , Newcastle Disease/epidemiology , Newcastle Disease/prevention & control , Phylogeny
19.
Viruses ; 14(8)2022 08 11.
Article in English | MEDLINE | ID: mdl-36016379

ABSTRACT

The highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in Egypt in late 2016. Since then, the virus has spread rapidly among different poultry sectors, becoming the dominant HPAI H5 subtype reported in Egypt. Different genotypes of the HPAI H5N8 virus were reported in Egypt; however, the geographic patterns and molecular evolution of the Egyptian HPAI H5N8 viruses are still unclear. Here, extensive epidemiological surveillance was conducted, including more than half a million samples collected from different poultry sectors (farms/backyards/live bird markets) from all governorates in Egypt during 2019-2021. In addition, genetic characterization and evolutionary analyses were performed using 47 selected positive H5N8 isolates obtained during the same period. The result of the conducted surveillance showed that HPAI H5N8 viruses of clade 2.3.4.4b continue to circulate in different locations in Egypt, with an obvious seasonal pattern, and no further detection of the HPAI H5N1 virus of clade 2.2.1.2 was observed in the poultry population during 2019-2021. In addition, phylogenetic and Bayesian analyses revealed that two major genotypes (G5 and G6) of HPAI H5N8 viruses were continually expanding among the poultry sectors in Egypt. Notably, molecular dating analysis suggested that the Egyptian HPAI H5N8 virus is the potential ancestral viruses of the European H5N8 viruses of 2020-2021. In summary, the data of this study highlight the current epidemiology, diversity, and evolution of HPAI H5N8 viruses in Egypt and call for continuous monitoring of the genetic features of the avian influenza viruses in Egypt.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Bayes Theorem , Egypt/epidemiology , Humans , Influenza A virus/genetics , Influenza in Birds/epidemiology , Molecular Epidemiology , Phylogeny , Poultry
20.
Trends Microbiol ; 29(7): 573-581, 2021 07.
Article in English | MEDLINE | ID: mdl-33712334

ABSTRACT

Emerging zoonotic diseases exert a significant burden on human health and have considerable socioeconomic impact worldwide. In Asia, live animals as well as animal products are commonly sold in informal markets. The interaction of humans, live domestic animals for sale, food products, and wild and scavenging animals, creates a risk for emerging infectious diseases. Such markets have been in the spotlight as sources of zoonotic viruses, for example, avian influenza viruses and coronaviruses, Here, we bring data together on the global impact of live and wet markets on the emergence of zoonotic diseases. We discuss how benefits can be maximized and risks minimized and conclude that current regulations should be implemented or revised, to mitigate the risk of new diseases emerging in the future.


Subject(s)
Commerce/standards , Communicable Diseases, Emerging/etiology , Food , Orthomyxoviridae Infections/transmission , Zoonoses/transmission , Animals , Asia , Birds/virology , COVID-19/transmission , COVID-19/virology , Commerce/legislation & jurisprudence , Commerce/methods , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/virology , Crowding , Humans , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Zoonoses/classification , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL