Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931244

ABSTRACT

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Subject(s)
DNA Methyltransferase 3A , Histones , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , Histones/metabolism , Neuroinflammatory Diseases
2.
Mod Pathol ; 37(2): 100388, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995913

ABSTRACT

Cemento-ossifying fibroma (COF) of the jaws is currently classified as a benign mesenchymal odontogenic tumor, and only targeted approaches have been used to assess its genetic alterations. A minimal proportion of COFs harbor CDC73 somatic mutations, and copy number alterations (CNAs) involving chromosomes 7 and 12 have recently been reported in a small proportion of cases. However, the genetic background of COFs remains obscure. We used a combination of whole-exome sequencing and RNA sequencing to assess somatic mutations, fusion transcripts, and CNAs in a cohort of 12 freshly collected COFs. No recurrent fusions have been identified among the 5 cases successfully analyzed by RNA sequencing, with in-frame fusions being detected in 2 cases (MARS1::GOLT1B and PARG::BMS1 in one case and NCLN::FZR1 and NFIC::SAMD1 in the other case) and no candidate fusions identified for the remaining 3 cases. No recurrent pathogenic mutations were detected in the 11 cases that had undergone whole-exome sequencing. A KRAS p.L19F missense variant was detected in one case, and 2 CDC73 deletions were detected in another case. The other variants were of uncertain significance and included variants in PC, ACTB, DOK6, HACE1, and COL1A2 and previously unreported variants in PTPN14, ATP5F1C, APOBEC1, HDAC5, ATF7IP, PARP2, and ACTR3B. The affected genes do not clearly converge on any signaling pathway. CNAs were detected in 5/11 cases (45%), with copy gains involving chromosome 12 occurring in 3/11 cases (27%). In conclusion, no recurrent fusions or pathogenic variants have been detected in the present COF cohort, with copy gains involving chromosome 12 occurring in 27% of cases.


Subject(s)
Cementoma , Fibroma, Ossifying , Odontogenic Tumors , Humans , Cementoma/pathology , Fibroma, Ossifying/genetics , Odontogenic Tumors/pathology , Genomics , Protein Tyrosine Phosphatases, Non-Receptor , Adaptor Proteins, Signal Transducing , Ubiquitin-Protein Ligases
3.
J Pediatr Hematol Oncol ; 46(1): e87-e90, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38032194

ABSTRACT

We report the case of a 14-year-old boy with a steroid-dependent refractory tumor whose longstanding dexamethasone treatment was successfully discontinued after a course of bevacizumab. The use of bevacizumab despite the absence of clear evidence of radionecrosis allowed a significant decrease in the amount of the brain edema.


Subject(s)
Brain Edema , Brain Neoplasms , Glioma , Radiation Injuries , Male , Humans , Adolescent , Bevacizumab/therapeutic use , Brain Edema/drug therapy , Brain Edema/etiology , Brain Neoplasms/complications , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioma/complications , Glioma/drug therapy , Glioma/pathology , Angiogenesis Inhibitors/therapeutic use
4.
BMC Cancer ; 22(1): 1297, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503484

ABSTRACT

BACKGROUND: Juvenile Pilocytic Astrocytomas (JPAs) are one of the most common pediatric brain tumors, and they are driven by aberrant activation of the mitogen-activated protein kinase (MAPK) signaling pathway. RAF-fusions are the most common genetic alterations identified in JPAs, with the prototypical KIAA1549-BRAF fusion leading to loss of BRAF's auto-inhibitory domain and subsequent constitutive kinase activation. JPAs are highly vascular and show pervasive immune infiltration, which can lead to low tumor cell purity in clinical samples. This can result in gene fusions that are difficult to detect with conventional omics approaches including RNA-Seq. METHODS: To this effect, we applied RNA-Seq as well as linked-read whole-genome sequencing and in situ Hi-C as new approaches to detect and characterize low-frequency gene fusions at the genomic, transcriptomic and spatial level. RESULTS: Integration of these datasets allowed the identification and detailed characterization of two novel BRAF fusion partners, PTPRZ1 and TOP2B, in addition to the canonical fusion with partner KIAA1549. Additionally, our Hi-C datasets enabled investigations of 3D genome architecture in JPAs which showed a high level of correlation in 3D compartment annotations between JPAs compared to other pediatric tumors, and high similarity to normal adult astrocytes. We detected interactions between BRAF and its fusion partners exclusively in tumor samples containing BRAF fusions. CONCLUSIONS: We demonstrate the power of integrating multi-omic datasets to identify low frequency fusions and characterize the JPA genome at high resolution. We suggest that linked-reads and Hi-C could be used in clinic for the detection and characterization of JPAs.


Subject(s)
Astrocytoma , Brain Neoplasms , Child , Adult , Humans , Multiomics , Proto-Oncogene Proteins B-raf/genetics , Oncogene Proteins, Fusion/genetics , Astrocytoma/pathology , Brain Neoplasms/pathology , Receptor-Like Protein Tyrosine Phosphatases, Class 5
5.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162999

ABSTRACT

Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3-/- in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.


Subject(s)
Enzyme Inhibitors/administration & dosage , Influenza A Virus, H1N1 Subtype/enzymology , Neuraminidase/metabolism , Orthomyxoviridae Infections/drug therapy , Protein Disulfide-Isomerases/metabolism , Viral Proteins/metabolism , A549 Cells , Animals , Cells, Cultured , Disease Models, Animal , Dogs , Enzyme Inhibitors/pharmacology , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Neuraminidase/chemistry , Orthomyxoviridae Infections/metabolism , Primary Cell Culture , Protein Folding , Trachea/cytology , Trachea/drug effects , Trachea/metabolism , Trachea/virology , Viral Proteins/chemistry
6.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1243-59, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27154200

ABSTRACT

Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Asthma/drug therapy , Taurochenodeoxycholic Acid/pharmacology , Airway Remodeling/drug effects , Animals , Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Asthma/immunology , Drug Evaluation, Preclinical , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/immunology , Female , Mice, Inbred C57BL , Pyroglyphidae/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Taurochenodeoxycholic Acid/therapeutic use
7.
J Immunol ; 190(8): 3859-68, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23509346

ABSTRACT

The Th2 cytokine IL-13 regulates several aspects of the asthmatic phenotype, including airway inflammation, airway hyperresponsiveness, and mucus production. The Th17 cytokine IL-17A is also implicated in asthma and has been shown to both positively and negatively regulate Th2-dependent responses in murine models of allergic airways disease. Our objective in this study was to better understand the role of IL-17 in airway inflammation by examining how IL-17 modifies IL-13-induced airway inflammatory responses. We treated BALB/c mice intranasally with IL-13 or IL-17 alone or in combination for 8 consecutive days, after which airway hyperresponsiveness, inflammatory cell influx into the lung, and lung chemokine/cytokine expression were assessed. As expected, IL-13 increased airway inflammation and airway hyperresponsiveness. IL-13 also increased numbers of IL-17-producing CD4(+) and γδ T cells. Treating mice with a combination of IL-13 and IL-17 reduced infiltration of IL-17(+) γδ T cells, but increased the number of infiltrating eosinophils. In contrast, coadministration of IL-13 with a higher dose of IL-17 decreased all IL-13-induced inflammatory responses, including infiltration of both IL-17(+)CD4(+) and γδ T cells. To examine the inhibitory activity of IL-17-expressing γδ T cells in this model, these cells were adoptively transferred into naive recipients. Consistent with an inhibitory role for γδ T cells, IL-13-induced infiltration of eosinophils, lymphocytes, and IL-17(+)CD4(+) T cells was diminished in recipients of the γδ T cells. Collectively, our data indicate that allergic airway inflammatory responses induced by IL-13 are modulated by both the quantity and the cellular source of IL-17.


Subject(s)
Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/pathology , Inflammation/immunology , Inflammation/pathology , Interleukin-13/pharmacology , Interleukin-17/physiology , Animals , Bronchial Hyperreactivity/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Dose-Response Relationship, Immunologic , Inflammation/metabolism , Interleukin-17/deficiency , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/metabolism
8.
J Physiol ; 592(14): 2999-3012, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24687581

ABSTRACT

Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Trachea/physiology , Animals , Coculture Techniques , Contractile Proteins/physiology , Male , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Ovalbumin/pharmacology , Rats, Inbred BN , Spleen/cytology
9.
Respir Res ; 15: 90, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25123451

ABSTRACT

BACKGROUND: Th2 immune responses are linked primarily to mild and moderate asthma, while Th17 cells, Interleukin-17A (IL-17) and neutrophilia have been implicated in more severe forms of disease. How Th2-dependent allergic reactions are influenced by Th17 and IL-17-γδ T cells is poorly understood. In murine models, under some conditions, IL-17 promotes Th2-biased airway inflammatory responses. However, IL-17-γδ T cells have been implicated in the inhibition and resolution of allergic airway inflammation and hyperresponsiveness (AHR). METHODS: We compared airway responses in Balb/c mice sensitized to OVA with (and without) a Th2-skewing aluminum-based adjuvant and the IL-17 skewing, complete Freund's adjuvant (CFA). AHR was measured invasively by flexiVent, while serum OVA-IgE was quantified by an enzyme immunoassay. Airway inflammatory and cytokine profiles, and cellular sources of IL-17 were assessed from bronchoalveolar lavage and/or lungs. The role of γδ T cells in these responses was addressed in OVA/CFA sensitized mice using a γδ T cell antibody. RESULTS: Following OVA challenge, all mice exhibited mixed eosinophilic/neutrophilic airway inflammatory profiles and elevated serum OVA-IgE. Whereas OVA/alum sensitized mice had moderate inflammation and AHR, OVA/CFA sensitized mice had significantly greater inflammation but lacked AHR. This correlated with a shift in IL-17 production from CD4+ to γδ T cells. Additionally, OVA/CFA sensitized mice, given a γδ TCR stimulatory antibody, showed increased frequencies of IL-17-γδ T cells and diminished airway reactivity and eosinophilia. CONCLUSIONS: Thus, the conditions of antigen sensitization influence the profile of cells that produce IL-17, the balance of which may then modulate the airway inflammatory responses, including AHR. The possibility for IL-17-γδ T cells to reduce AHR and robust eosinophilic inflammation provides evidence that therapeutic approaches focused on stimulating and increasing airway IL-17-γδ T cells may be an effective alternative in treating steroid resistant, severe asthma.


Subject(s)
Alum Compounds/toxicity , Asthma/metabolism , Interleukin-17/biosynthesis , Ovalbumin/toxicity , Th2 Cells/metabolism , Animals , Asthma/chemically induced , Asthma/immunology , Interleukin-17/immunology , Mice , Mice, Inbred BALB C , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Th2 Cells/drug effects
10.
Front Physiol ; 12: 665622, 2021.
Article in English | MEDLINE | ID: mdl-34122136

ABSTRACT

The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.

11.
Redox Biol ; 22: 101129, 2019 04.
Article in English | MEDLINE | ID: mdl-30735910

ABSTRACT

Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons.


Subject(s)
Orthomyxoviridae Infections/etiology , Orthomyxoviridae Infections/metabolism , Protein Disulfide-Isomerases/genetics , Respiratory Mucosa/enzymology , Animals , Disease Models, Animal , Disease Susceptibility , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Deletion , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/physiology , Mice , Mice, Transgenic , Orthomyxoviridae Infections/diagnosis , Protein Disulfide-Isomerases/metabolism , Respiratory Function Tests , Respiratory Hypersensitivity/etiology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/physiopathology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Viral Load
12.
JCI Insight ; 4(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-31045581

ABSTRACT

Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPR-associated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl ß-muricholic acid (AßM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AßM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs.


Subject(s)
Allergens/immunology , Asthma/immunology , Inflammation/immunology , Respiratory Hypersensitivity/immunology , Unfolded Protein Response/immunology , Animals , Bile Acids and Salts/adverse effects , Chemokines , Cytokines/metabolism , Female , Humans , Hypersensitivity , Lung/immunology , Lung/metabolism , Metaplasia/immunology , Metaplasia/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Proteostasis Deficiencies , Pyroglyphidae/immunology , Receptors, G-Protein-Coupled/metabolism , Respiratory Hypersensitivity/drug therapy , Taurochenodeoxycholic Acid/pharmacology , Unfolded Protein Response/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL