Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Drug Metab Dispos ; 52(9): 949-956, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38866474

ABSTRACT

The role of the kidney as an excretory organ for exogenous and endogenous compounds is well recognized, but there is a wealth of data demonstrating that the kidney has significant metabolizing capacity for a variety of exogenous and endogenous compounds that in some cases surpass the liver. The induction of drug-metabolizing enzymes by some chemicals can cause drug-drug interactions and intraindividual variability in drug clearance. In this study, we evaluated the expression and induction of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) isoforms in 3D-cultured primary human renal proximal tubule epithelial cells (RPTEC) to elucidate their utility as models of renal drug metabolism. CYP2B6, CYP2E1, CYP3A4, CYP3A5, and all detected UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) mRNA levels in 3D-RPTEC were significantly higher than those in 2D-RPTEC and HK-2 cells and were close to the levels in the human kidney cortex. CYP1B1 and CYP2J2 mRNA levels in 3D-RPTEC were comparable to those in 2D-RPTEC, HK-2 cells, and the human kidney cortex. Midazolam 1'-hydroxylation, trifluoperazine N-glucuronidation, serotonin O-glucuronidation, propofol O-glucuronidation, and morphine 3-glucuronidation in the 3D-RPTEC were significantly higher than the 2D-RPTEC and comparable to those in the HepaRG cells, although bupropion, ebastine, and calcitriol hydroxylations were not different between the 2D- and 3D-RPTEC. Treatment with ligands of the aryl hydrocarbon receptor and farnesoid X receptor induced CYP1A1 and UGT2B4 expression, respectively, in 3D-RPTEC compared with 2D-RPTEC. We provided information on the expression, activity, and induction abilities of P450s and UGTs in 3D-RPTEC as an in vitro human renal metabolism model. SIGNIFICANCE STATEMENT: This study demonstrated that the expression of cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) in 3D-cultured primary human renal proximal tubule epithelial cells (3D-RPTEC) was higher than those in 2D-cultured primary human renal proximal tubule epithelial cells and HK-2 cells. The results were comparable to that in the human kidney cortex. 3D-RPTEC are useful for evaluating the induction of kidney P450s, UDP-glucuronosyltransferases, and human renal drug metabolism in cellulo.


Subject(s)
Cytochrome P-450 Enzyme System , Epithelial Cells , Glucuronosyltransferase , Kidney Tubules, Proximal , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cells, Cultured , Enzyme Induction/drug effects , Cell Line , Cell Culture Techniques/methods , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Xenobiotica ; 54(3): 107-115, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38193900

ABSTRACT

Tipepidine, an antitussive drug, has been reported to have central pharmacological effects and can be expected to be safely repositioned as treatment for psychiatric disorders. Since tipepidine requires three doses per day, development of a once-daily medication would be highly beneficial. Previously, we reported that combination use with quinidine, a CYP2D6 inhibitor, prolongs the half-life of tipepidine in chimeric mice with humanised liver.In this study, to predict this combination effect in humans, a physiologically based pharmacokinetic (PBPK) model was developed, and quantitative simulation was conducted. The simulation results indicated that concomitant administration of tipepidine with quinidine increased the predicted Cmax, AUC, and t1/2 of tipepidine in the Japanese population by 3.4-, 6.6-, and 2.4-fold, respectively.Furthermore, to compare with another approach that aims to prolong the half-life, the PK profile of tipepidine administered in hypothetical extended-release form was simulated. Extended-release form was predicted to be more influenced by CYP2D6 genotype than combination with quinidine, and the predicted plasma exposure was markedly increased in poor metabolizers, potentially leading to adverse effects.In conclusion, quantitative simulation using the PBPK model suggests the feasibility of the safe repositioning of tipepidine as a once-daily medication in combination with quinidine.


Subject(s)
Piperidines , Quinidine , Humans , Animals , Mice , Quinidine/pharmacology , Drug Interactions , Enzyme Inhibitors/pharmacology , Models, Biological
3.
Biochem Pharmacol ; 223: 116128, 2024 May.
Article in English | MEDLINE | ID: mdl-38492781

ABSTRACT

Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.


Subject(s)
Carboxylesterase , Carboxylic Ester Hydrolases , Humans , Animals , Mice , Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Microsomes, Liver/metabolism , Liver/metabolism , Hydrolysis , Triglycerides/metabolism
4.
Drug Metab Pharmacokinet ; 57: 101025, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39068856

ABSTRACT

Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib. To obtain a hint which may help to clarify the cause of nintedanib-induced liver injury, we investigated whether iminium ions were formed in the human liver. To detect unstable iminium ions using liquid chromatography-tandem mass spectrometry (LC-MS/MS), potassium cyanide was added to the reaction mixture as a trapping agent. Human liver and intestinal microsomes were incubated with nintedanib in the presence of NADPH to form two iminium ion metabolites on the piperazine ring. Their formation is strongly inhibited by ketoconazole, a potent cytochrome P450 (CYP) 3A4 inhibitor. Among the recombinant P450s, only CYP3A4 formed cyanide adducts. The role of CYP3A4 was supported by the positive correlation between CYP3A4 protein abundance, as determined by LC-MS-based proteomics, and the formation of cyanide adducts in 25 individual human liver microsomes. In conclusion, we have demonstrated that iminium ion metabolites are formed from nintedanib by CYP3A4 as potential reactive metabolites.


Subject(s)
Cytochrome P-450 CYP3A , Indoles , Humans , Indoles/metabolism , Indoles/pharmacology , Indoles/chemistry , Cytochrome P-450 CYP3A/metabolism , Imines/metabolism , Imines/pharmacology , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Tandem Mass Spectrometry , Ions/metabolism
5.
Drug Metab Pharmacokinet ; 56: 101007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797091

ABSTRACT

Arylacetamide deacetylase (AADAC) is involved in drug hydrolysis and lipid metabolism. In 23 human liver samples, no significant correlation was observed between AADAC mRNA (19.7-fold variation) and protein levels (137.6-fold variation), suggesting a significant contribution of post-transcriptional regulation to AADAC expression. The present study investigated whether AADAC is regulated by microRNA in the human liver and elucidate its biological significance. Computational analysis predicted two potential miR-222-3p recognition elements in the 3'-untranslated region (UTR) of AADAC. Luciferase assay revealed that the miR-222-3p recognition element was functional in downregulating AADAC expression. In HEK293 cells transfected with an AADAC expression plasmid containing 3'-UTR, miR-222-3p overexpression decreased AADAC protein level and activity, whereas miR-222-3p inhibition increased them. Similar results were observed in human hepatoma-derived Huh-1 cells endogenously expressing AADAC and HepaSH cells that are hepatocytes from chimeric mice with humanized livers. In individual human liver samples, AADAC protein levels inversely correlated with miR-222-3p levels. Overexpression of miR-222-3p resulted in increased lipid accumulation in Huh-1 cells, which was reversed by AADAC overexpression. In contrast, miR-222-3p inhibition decreased lipid accumulation, which was reversed by AADAC knockdown. In conclusion, we found that hepatic AADAC was downregulated by miR-222-3p, resulting in decreased drug hydrolysis and increased lipid accumulation.


Subject(s)
Down-Regulation , Lipid Metabolism , MicroRNAs , Animals , Humans , Mice , Amidohydrolases/metabolism , Amidohydrolases/genetics , Carboxylic Ester Hydrolases , HEK293 Cells , Hydrolysis , Lipid Metabolism/genetics , Liver/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL