Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(1): 150-164, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38181731

ABSTRACT

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Community Resources , Multiomics , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Mendelian Randomization Analysis
2.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055212

ABSTRACT

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Subject(s)
Anemia , Coronary Artery Disease , Myocardial Infarction , Renal Insufficiency, Chronic , Anemia/drug therapy , Anemia/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Myocardial Infarction/genetics , Renal Insufficiency, Chronic/genetics
3.
Am J Hum Genet ; 109(6): 1077-1091, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35580588

ABSTRACT

Hearing loss is one of the top contributors to years lived with disability and is a risk factor for dementia. Molecular evidence on the cellular origins of hearing loss in humans is growing. Here, we performed a genome-wide association meta-analysis of clinically diagnosed and self-reported hearing impairment on 723,266 individuals and identified 48 significant loci, 10 of which are novel. A large proportion of associations comprised missense variants, half of which lie within known familial hearing loss loci. We used single-cell RNA-sequencing data from mouse cochlea and brain and mapped common-variant genomic results to spindle, root, and basal cells from the stria vascularis, a structure in the cochlea necessary for normal hearing. Our findings indicate the importance of the stria vascularis in the mechanism of hearing impairment, providing future paths for developing targets for therapeutic intervention in hearing loss.


Subject(s)
Deafness , Hearing Loss , Animals , Cochlea , Genome-Wide Association Study , Hearing Loss/genetics , Humans , Mice , Stria Vascularis
4.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Article in English | MEDLINE | ID: mdl-36695634

ABSTRACT

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/genetics , Genome, Human , Whole Genome Sequencing , Genotype
5.
Mov Disord ; 39(4): 728-733, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38390630

ABSTRACT

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) is an early feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Damaging coding variants in Glucocerebrosidase (GBA1) are a genetic risk factor for RBD. Recently, a population-specific non-coding risk variant (rs3115534) was found to be associated with PD risk and earlier onset in individuals of African ancestry. OBJECTIVES: We aimed to investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD in persons with PD. METHODS: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. All DNA samples were genotyped and imputed, and the GBA1 rs3115534 risk variant was extracted. The RBD screening questionnaire (RBDSQ) was used to assess symptoms of possible RBD. RESULTS: RBD was present in 200 PD (28.2%) and 51 (6.6%) controls. We identified that the non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (ß, 0.3640; standard error [SE], 0.103, P = 4.093e-04), as well as in all samples after adjusting for PD status (ß, 0.2542; SE, 0.108; P = 0.019) suggesting that although non-coding, this variant may have the same downstream consequences as GBA1 coding variants. CONCLUSIONS: Our results indicate that the non-coding GBA1 rs3115534 risk variant is associated with an increasing number of RBD symptoms in persons with PD of Nigerian origin. Further research is needed to assess if this variant is also associated with polysomnography-defined RBD and with RBD symptoms in DLB. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Glucosylceramidase , Parkinson Disease , REM Sleep Behavior Disorder , West African People , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Genetic Predisposition to Disease , Genotype , Glucosylceramidase/genetics , Nigeria , Parkinson Disease/genetics , Parkinson Disease/complications , Polymorphism, Single Nucleotide , REM Sleep Behavior Disorder/genetics , Young Adult , Adult
6.
Mol Psychiatry ; 28(7): 3121-3132, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37198259

ABSTRACT

Genome-wide association studies (GWAS) of Alzheimer's disease are predominantly carried out in European ancestry individuals despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of Alzheimer's disease and related dementias to date. This method allowed us to identify two independent novel disease-associated loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk of Alzheimer's disease and related dementias.


Subject(s)
Alzheimer Disease , Genetic Predisposition to Disease , Humans , Alzheimer Disease/ethnology , Alzheimer Disease/genetics , Black or African American/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Genotype , Polymorphism, Single Nucleotide/genetics , East Asian People/genetics , European People/genetics , Caribbean People/genetics , Hispanic or Latino/genetics , South American People/genetics
7.
Brain ; 146(11): 4622-4632, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37348876

ABSTRACT

Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Risk Factors , Gene Frequency , Receptors, Immunologic
8.
Mov Disord ; 38(9): 1697-1705, 2023 09.
Article in English | MEDLINE | ID: mdl-37539664

ABSTRACT

BACKGROUND: Amyloid-ß, phosphorylated tau (p-tau), and total tau (t-tau) in cerebrospinal fluid are established biomarkers for Alzheimer's disease (AD). In other neurodegenerative diseases, such as Parkinson's disease (PD), these biomarkers have also been found to be altered, and the molecular mechanisms responsible for these alterations are still under investigation. Moreover, the interplay between these mechanisms and the diverse underlying disease states remains to be elucidated. OBJECTIVE: To investigate genetic contributions to the AD biomarkers and assess the commonality and heterogeneity of the associations per underlying disease status. METHODS: We conducted genome-wide association studies (GWASs) for the AD biomarkers on subjects from the Parkinson's Progression Markers Initiative, the Fox Investigation for New Discovery of Biomarkers, and the Alzheimer's Disease Neuroimaging Initiative, and meta-analyzed with the largest AD GWAS. We tested heterogeneity of associations of interest between different disease statuses (AD, PD, and control). RESULTS: We observed three GWAS signals: the APOE locus for amyloid-ß, the 3q28 locus between GEMC1 and OSTN for p-tau and t-tau, and the 7p22 locus (top hit: rs60871478, an intronic variant for DNAAF5, also known as HEATR2) for p-tau. The 7p22 locus is novel and colocalized with the brain DNAAF5 expression. Although no heterogeneity from underlying disease status was observed for the earlier GWAS signals, some disease risk loci suggested disease-specific associations with these biomarkers. CONCLUSIONS: Our study identified a novel association at the intronic region of DNAAF5 associated with increased levels of p-tau across all diseases. We also observed some disease-specific genetic associations with these biomarkers. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Parkinson Disease/genetics , Parkinson Disease/cerebrospinal fluid , Genome-Wide Association Study , tau Proteins/genetics , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Muscle Proteins/genetics , Transcription Factors/genetics
9.
Mov Disord ; 38(5): 899-903, 2023 05.
Article in English | MEDLINE | ID: mdl-36869417

ABSTRACT

BACKGROUND: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. OBJECTIVE: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. METHODS: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. RESULTS: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). CONCLUSIONS: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Gaucher Disease , Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/complications , Parkinson Disease/genetics , Gaucher Disease/complications , Gaucher Disease/genetics , Parkinsonian Disorders/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Risk Factors , Mutation
10.
Mol Psychiatry ; 27(11): 4419-4431, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35974141

ABSTRACT

Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.


Subject(s)
Learning , Memory, Short-Term , Memory, Short-Term/physiology , Verbal Learning , Multifactorial Inheritance , Brain
11.
Ann Neurol ; 90(1): 35-42, 2021 07.
Article in English | MEDLINE | ID: mdl-33901317

ABSTRACT

OBJECTIVE: Parkinson's disease (PD) is a complex neurodegenerative disorder. Men are on average ~ 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner. METHODS: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases. RESULTS: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (~ 20%). INTERPRETATION: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients. ANN NEUROL 2021;90:41-48.


Subject(s)
Genetic Predisposition to Disease , Genotype , Parkinson Disease/genetics , Sex Characteristics , Aged , Female , Genome-Wide Association Study , Humans , Male , Middle Aged
12.
Mov Disord ; 37(1): 95-105, 2022 01.
Article in English | MEDLINE | ID: mdl-34542912

ABSTRACT

BACKGROUND: The leucine-rich repeat kinase 2 (LRRK2) gene harbors both rare highly damaging missense variants (eg, p.G2019S) and common noncoding variants (eg, rs76904798) with lower effect sizes that are associated with Parkinson's disease (PD) risk. OBJECTIVES: This study aimed to investigate in a large meta-analysis whether the LRRK2 Genome-Wide Association Study (GWAS) signal represented by rs76904798 is independently associated with PD risk from LRRK2 coding variation and whether complex linkage disequilibrium structures with p.G2019S and the 5' noncoding haplotype account for the association of LRRK2 coding variants. METHODS: We performed a meta-analysis using imputed genotypes from 17,838 patients, 13,404 proxy patients, and 173,639 healthy controls of European ancestry. We excluded carriers of p.G2019S and/or rs76904798 to clarify the role of LRRK2 coding variation in mediating disease risk and excluded carriers of relatively rare LRRK2 coding variants to assess the independence of rs76904798. We also investigated the co-inheritance of LRRK2 coding variants with p.G2019S, rs76904798, and p.N2081D. RESULTS: LRRK2 rs76904798 remained significantly associated with PD after excluding the carriers of relatively rare LRRK2 coding variants. LRRK2 p.R1514Q and p.N2081D were frequently co-inherited with rs76904798, and the allele distribution of p.S1647T significantly changed among patients after removing rs76904798 carriers. CONCLUSIONS: These data suggest that the LRRK2 coding variants previously related to PD (p.N551K, p.R1398H, p.M1646T, and p.N2081D) do not drive the 5' noncoding GWAS signal. These data, however, do not preclude the independent association of the haplotype p.N551K-p.R1398H and p.M1646T with altered disease risk. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Parkinson Disease , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Parkinson Disease/genetics
13.
Neurobiol Dis ; 148: 105182, 2021 01.
Article in English | MEDLINE | ID: mdl-33307186

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative disease with a variety of genetic and environmental factors contributing to disease. The SNCA gene encodes for the alpha-synuclein protein which plays a central role in PD, where aggregates of this protein are one of the pathological hallmarks of disease. Rare point mutations and copy number gains of the SNCA gene have been shown to cause autosomal dominant PD, and common DNA variants identified using Genome-Wide Association Studies (GWAS) are a moderate risk factor for PD. The UK Biobank is a large-scale population prospective study including ~500,000 individuals that has revolutionized human genetics. Here we assessed the frequency of SNCA variation in this cohort and identified 30 subjects carrying variants of interest including duplications (n = 6), deletions (n = 6) and large complex likely mosaic events (n = 18). No known pathogenic missense variants were identified. None of these subjects were reported to be a PD case, although it is possible that these individuals may develop PD at a later age, and whilst three had known prodromal features, these did not meet defined clinical criteria for being considered 'prodromal' cases. Seven of the 18 large complex carriers showed a history of blood based cancer. Overall, we identified copy number variants in the SNCA region in a large population based cohort without reported PD phenotype and symptoms. Putative mosaicism of the SNCA gene was identified, however, it is unclear whether it is associated with PD. These individuals are potential candidates for further investigation by performing SNCA RNA and protein expression studies, as well as promising clinical trial candidates to understand how duplication carriers potentially escape PD.


Subject(s)
DNA Copy Number Variations , Hematologic Neoplasms/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Aged , Biological Specimen Banks , Female , Gene Deletion , Gene Duplication , Hematologic Neoplasms/epidemiology , Humans , Lymphoma/epidemiology , Lymphoma/genetics , Male , Middle Aged , Mosaicism , Multiple Myeloma/epidemiology , Multiple Myeloma/genetics , Mutation , Myelodysplastic Syndromes/epidemiology , Myelodysplastic Syndromes/genetics , Parkinson Disease/epidemiology , United Kingdom/epidemiology
14.
Hum Mol Genet ; 28(19): 3244-3254, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31261387

ABSTRACT

Multiple genome-wide association studies (GWAS) in Parkinson disease (PD) have identified a signal at chromosome 4p16.3; however, the causal variant has not been established for this locus. Deep investigation of the region resulted in one identified variant, the rs34311866 missense SNP (p.M393T) in TMEM175, which is 20 orders of magnitude more significant than any other SNP in the region. Because TMEM175 is a lysosomal gene that has been shown to influence α-synuclein phosphorylation and autophagy, the p.M393T variant is an attractive candidate, and we have examined its effect on TMEM175 protein and PD-related biology. After knocking down each of the genes located under the GWAS peak via multiple shRNAs, only TMEM175 was found to consistently influence accumulation of phosphorylated α-synuclein (p-α-syn). Examination of the p.M393T variant showed effects on TMEM175 function that were intermediate between the wild-type (WT) and knockout phenotypes, with reduced regulation of lysosomal pH in response to starvation and minor changes in clearance of autophagy substrates, reduced lysosomal localization, and increased accumulation of p-α-syn. Finally, overexpression of WT TMEM175 protein reduced p-α-syn, while overexpression of the p.M393T variant resulted in no change in α-synuclein phosphorylation. These results suggest that the main signal in the chromosome 4p16.3 PD risk locus is driven by the TMEM175 p.M393T variant. Modulation of TMEM175 may impact α-synuclein biology and therefore may be a rational therapeutic strategy for PD.


Subject(s)
Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Potassium Channels/genetics , alpha-Synuclein/metabolism , Cell Line , Chromosomes, Human, Pair 4/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Lysosomes/metabolism , Parkinson Disease/metabolism , Phosphorylation , Potassium Channels/metabolism
15.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29304378

ABSTRACT

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Subject(s)
Bone Density/genetics , Genome-Wide Association Study , Adolescent , Age Factors , Animals , Child , Child, Preschool , Genetic Loci , Humans , Infant , Infant, Newborn , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Regression Analysis
16.
Ann Neurol ; 87(4): 584-598, 2020 04.
Article in English | MEDLINE | ID: mdl-31976583

ABSTRACT

OBJECTIVE: Rapid eye movement sleep behavior disorder (RBD) is a prodromal synucleinopathy, as >80% will eventually convert to overt synucleinopathy. We performed an in-depth analysis of the SNCA locus to identify RBD-specific risk variants. METHODS: Full sequencing and genotyping of SNCA was performed in isolated/idiopathic RBD (iRBD, n = 1,076), Parkinson disease (PD, n = 1,013), dementia with Lewy bodies (DLB, n = 415), and control subjects (n = 6,155). The iRBD cases were diagnosed with RBD prior to neurodegeneration, although some have since converted. A replication cohort from 23andMe of PD patients with probable RBD (pRBD) was also analyzed (n = 1,782 cases; n = 131,250 controls). Adjusted logistic regression models and meta-analyses were performed. Effects on conversion rate were analyzed in 432 RBD patients with available data using Kaplan-Meier survival analysis. RESULTS: A 5'-region SNCA variant (rs10005233) was associated with iRBD (odds ratio [OR] = 1.43, p = 1.1E-08), which was replicated in pRBD. This variant is in linkage disequilibrium (LD) with other 5' risk variants across the different synucleinopathies. An independent iRBD-specific suggestive association (rs11732740) was detected at the 3' of SNCA (OR = 1.32, p = 4.7E-04, not statistically significant after Bonferroni correction). Homozygous carriers of both iRBD-specific SNPs were at highly increased risk for iRBD (OR = 5.74, p = 2E-06). The known top PD-associated variant (3' variant rs356182) had an opposite direction of effect in iRBD compared to PD. INTERPRETATION: There is a distinct pattern of association at the SNCA locus in RBD as compared to PD, with an opposite direction of effect at the 3' of SNCA. Several 5' SNCA variants are associated with iRBD and with pRBD in overt synucleinopathies. ANN NEUROL 2020;87:584-598.


Subject(s)
Lewy Body Disease/genetics , Parkinson Disease/genetics , Prodromal Symptoms , REM Sleep Behavior Disorder/genetics , alpha-Synuclein/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , Synucleinopathies/genetics
17.
Mov Disord ; 36(5): 1250-1258, 2021 05.
Article in English | MEDLINE | ID: mdl-33497488

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a genetically complex neurodegenerative disease with ~20 genes known to contain mutations that cause PD or atypical parkinsonism. Large-scale next-generation sequencing projects have revolutionized genomics research. Applying these data to PD, many genes have been reported to contain putative disease-causing mutations. In most instances, however, the results remain quite limited and rather preliminary. Our aim was to assist researchers on their search for PD-risk genes and variant candidates with an easily accessible and open summary-level genomic data browser for the PD research community. METHODS: Sequencing and imputed genotype data were obtained from multiple sources and harmonized and aggregated. RESULTS: In total we included a total of 102,127 participants, including 28,453 PD cases, 1650 proxy cases, and 72,024 controls. CONCLUSIONS: We present here the Parkinson's Disease Sequencing Browser: a Shiny-based web application that presents comprehensive summary-level frequency data from multiple large-scale genotyping and sequencing projects https://pdgenetics.shinyapps.io/VariantBrowser/. Published © 2021 This article is a U.S. Government work and is in the public domain in the USA. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Parkinsonian Disorders , DNA , Humans , Mutation/genetics , Parkinson Disease/genetics
18.
Mov Disord ; 36(8): 1795-1804, 2021 08.
Article in English | MEDLINE | ID: mdl-33960523

ABSTRACT

BACKGROUND: Whole-genome sequencing data are available from several large studies across a variety of diseases and traits. However, massive storage and computation resources are required to use these data, and to achieve sufficient power for discoveries, harmonization of multiple cohorts is critical. OBJECTIVES: The Accelerating Medicines Partnership Parkinson's Disease program has developed a research platform for Parkinson's disease (PD) that integrates the storage and analysis of whole-genome sequencing data, RNA expression data, and clinical data, harmonized across multiple cohort studies. METHODS: The version 1 release contains whole-genome sequencing data derived from 3941 participants from 4 cohorts. Samples underwent joint genotyping by the TOPMed Freeze 9 Variant Calling Pipeline. We performed descriptive analyses of these whole-genome sequencing data using the Accelerating Medicines Partnership Parkinson's Disease platform. RESULTS: The clinical diagnosis of participants in version 1 release includes 2005 idiopathic PD patients, 963 healthy controls, 64 prodromal subjects, 62 clinically diagnosed PD subjects without evidence of dopamine deficit, and 705 participants of genetically enriched cohorts carrying PD risk-associated GBA variants or LRRK2 variants, of whom 304 were affected. We did not observe significant enrichment of pathogenic variants in the idiopathic PD group, but the polygenic risk score was higher in PD both in nongenetically enriched cohorts and genetically enriched cohorts. The population analysis showed a correlation between genetically enriched cohorts and Ashkenazi Jewish ancestry. CONCLUSIONS: We describe the genetic component of the Accelerating Medicines Partnership Parkinson's Disease platform, a solution to democratize data access and analysis for the PD research community. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Parkinson Disease , Cohort Studies , Humans , Mutation , Parkinson Disease/drug therapy , Parkinson Disease/genetics
19.
Mov Disord ; 36(1): 106-117, 2021 01.
Article in English | MEDLINE | ID: mdl-33002231

ABSTRACT

BACKGROUND: Previous studies reported various symptoms of Parkinson's disease (PD) associated with sex. Some were conflicting or confirmed in only one study. OBJECTIVES: We examined sex associations to PD phenotypes cross-sectionally and longitudinally in large-scale data. METHODS: We tested 40 clinical phenotypes, using longitudinal, clinic-based patient cohorts, consisting of 5946 patients, with a median follow-up of 3.1 years. For continuous outcomes, we used linear regressions at baseline to test sex-associated differences in presentation, and linear mixed-effects models to test sex-associated differences in progression. For binomial outcomes, we used logistic regression models at baseline and Cox regression models for survival analyses. We adjusted for age, disease duration, and medication use. In the secondary analyses, data from 17 719 PD patients and 7588 non-PD participants from an online-only, self-assessment PD cohort were cross-sectionally evaluated to determine whether the sex-associated differences identified in the primary analyses were consistent and unique to PD. RESULTS: Female PD patients had a higher risk of developing dyskinesia early during the follow-up period, with a slower progression in activities of daily living difficulties, and a lower risk of developing cognitive impairments compared with male patients. The findings in the longitudinal, clinic-based cohorts were mostly consistent with the results of the online-only cohort. CONCLUSIONS: We observed sex-associated contributions to PD heterogeneity. These results highlight the necessity of future research to determine the underlying mechanisms and importance of personalized clinical management. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Activities of Daily Living , Cohort Studies , Disease Progression , Female , Humans , Male , Parkinson Disease/epidemiology
20.
J Med Genet ; 57(5): 331-338, 2020 05.
Article in English | MEDLINE | ID: mdl-31784483

ABSTRACT

BACKGROUND: Classical randomisation of clinical trial patients creates a source of genetic variance that may be contributing to the high failure rate seen in neurodegenerative disease trials. Our objective was to quantify genetic difference between randomised trial arms and determine how imbalance can affect trial outcomes. METHODS: 5851 patients with Parkinson's disease of European ancestry data and two simulated virtual cohorts based on public data were used. Data were resampled at different sizes for 1000 iterations and randomly assigned to the two arms of a simulated trial. False-negative and false-positive rates were estimated using simulated clinical trials, and per cent difference in genetic risk score (GRS) and allele frequency was calculated to quantify variance between arms. RESULTS: 5851 patients with Parkinson's disease (mean (SD) age, 61.02 (12.61) years; 2095 women (35.81%)) as well as simulated patients from virtually created cohorts were used in the study. Approximately 90% of the iterations had at least one statistically significant difference in individual risk SNPs between each trial arm. Approximately 5%-6% of iterations had a statistically significant difference between trial arms in mean GRS. For significant iterations, the average per cent difference for mean GRS between trial arms was 130.87%, 95% CI 120.89 to 140.85 (n=200). Glucocerebrocidase (GBA) gene-only simulations see an average 18.86%, 95% CI 18.01 to 19.71 difference in GRS scores between trial arms (n=50). When adding a drug effect of -0.5 points in MDS-UPDRS per year at n=50, 33.9% of trials resulted in false negatives. CONCLUSIONS: Our data support the hypothesis that within genetically unmatched clinical trials, genetic heterogeneity could confound true therapeutic effects as expected. Clinical trials should undergo pretrial genetic adjustment or, at the minimum, post-trial adjustment and analysis for failed trials.


Subject(s)
Models, Statistical , Neurodegenerative Diseases/epidemiology , Parkinson Disease/epidemiology , Randomized Controlled Trials as Topic/statistics & numerical data , Female , Genetic Variation/genetics , Humans , Male , Middle Aged , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Polymorphism, Single Nucleotide/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL