Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Environ Res ; 252(Pt 2): 118920, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38657849

ABSTRACT

Long-term wastewater irrigation leads to the loss of calcium carbonate (CaCO3) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%. We found that SBFL promoted Cd transformation in the soil from active exchangeable species to more stable carbonate-bonded and residual species, which the X-ray diffraction patterns also confirmed results that CdSO4 reduced while CdS and CaCdCO3 increased. Correspondingly, the soil bioavailable Cd concentration was significantly reduced by 65.6-84.7%. The Cd concentrations in maize roots and shoots were significantly reduced by 11.7-50.6% and 13.0-70.0%, respectively, thereby promoting maize growth. Nevertheless, SBFL also increased the proportion of plant-unavailable phosphorus (P) in Ca8-P and Ca10-P by 4.3-13.0% and 10.7-25.9%, respectively, reducing the plant-available P (Olsen P) content by 5.2-22.1%. Consequently, soil P-acquiring associated enzyme (alkaline phosphatase) activity and microbial (Proteobacteria, Bacteroidota, and Actinobacteria) community abundance significantly increased. Our findings showed that adding SBFL to wastewater-irrigated calcareous soil stabilized Cd, but exacerbated P limitation. Therefore, it is necessary to alleviate P limitations in the practice of recalcifying degraded calcareous land.


Subject(s)
Cadmium , Calcium Carbonate , Phosphorus , Soil Pollutants , Soil , Wastewater , Zea mays , Cadmium/analysis , Cadmium/chemistry , Phosphorus/analysis , Wastewater/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Zea mays/chemistry , Calcium Carbonate/chemistry , Agricultural Irrigation/methods , Soil Microbiology , Oxides , Calcium Compounds
2.
Ecotoxicol Environ Saf ; 245: 114126, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36183429

ABSTRACT

The bio-remediation of As-polluted farmlands in the arid area is seldomly reported. This study aimed at understanding the impact of DOM, Fe-oxides, and FeOB biogeochemical processes on As remediation. The approaches used included: FeOB strain Pseudomonas flavescens LZU-3; Batch-experiment. Our results showed that all FeOB tested effectively immobilized As (>95%) during microbial mineralization; DOM play an important role in the reduction of Fe(III)(hydr)oxides and As(V); Less-crystallized ferrihydrite transform to more-crystallized goethite and secondary minerals; Under the reaction of FeOB and DOM, the As-Fe-OM ternary compound were formed, containing N, S, C and O functional group; The addition of OM can clearly reduce soil Eh, promoting dissolution of As in bound to iron oxides, co-precipitation of the amorphous iron oxide in Fe(III)-OM-FeOB, closely related to As in bound to insoluble organics and sulfides and mineral residues, which plays an important role in controlling the mobilization of As. This study provides controlling of As transportation and transformation in the As-DOM-Bio-Fe ternary system as As-remediation technology in the arid soil.


Subject(s)
Ferric Compounds , Iron , Bacteria/metabolism , Ferric Compounds/chemistry , Iron/chemistry , Minerals/chemistry , Oxidation-Reduction , Oxides/metabolism , Soil/chemistry , Sulfides/metabolism
3.
Environ Geochem Health ; 44(3): 829-845, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34061304

ABSTRACT

The environmental quality of remote alpine ecosystem has been drawn increasing attention owing to the increasingly severe atmospheric pollution. This study investigated the composition and sources of elements in the soil and moss collected from a pristine spruce forest in the Qilian Mountains, Northwest China. The order of mean concentrations of elements investigated in soil was Fe > K > Na > Mg > Ca > Mn > Cr > Zn > Pb > Ni > Cu > As > Cd > Hg, and that of moss was Ca > Fe > Mg > K > Na > Mn > Cr > Zn > Pb > Ni > Cu > As > Cd > Hg. The concentrations of trace metals (except for As) in soil were greater than the soil background values, with Pb contamination more serious than the other elements. The Nemerow integrated pollution index (NIPI) values indicated that the soils were heavily polluted by Pb, Cd and Ni. The potential ecological risk index (PERI) suggested that the soils were at moderate risk. In particular, Hg and Cd were the most critically potential factors for ecological risk. According to the bioaccumulation factors (BAF), the accumulated concentrations of Ca, Hg, Cd, Pb, Ni, Mg, Cr and Zn in moss were higher than those in soil. By performing the multivariate analyses, natural sources (airborne soil particles) were identified to be the major contributors for all elements, whereas anthropogenic sources also contributed to the accumulations of Pb and Cd in the soil and moss in this region.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Ecosystem , Environmental Monitoring , Forests , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
4.
Ecotoxicol Environ Saf ; 183: 109561, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31437730

ABSTRACT

Considerable studies have been done on heavy metal removing from aqueous solutions using loess. However, application of loess to heavy metal contaminated sediment is limited. The present study was to determine the effectiveness of loess to immobilize Cu, Zn, Cd and Pb in sediment. The loess was incubated with 10 kg wet sediment in doses of 0, 0.5, 1, 2, 5, 10 and 20 kg for 70 d and then subjected to the toxicity characteristic leaching procedure (TCLP). The possible mechanisms for heavy metal immobilization were illustrated using X-ray diffraction and scanning electron microscope. Results from TCLP confirmed loess reduced leaching rate of Cu and Zn achieving up to 42.4% and 17.6% reductions, respectively, when compared with untreated sediment. The loess could significantly immobilize Cu and Zn in sediment, and the optimum dose of loess in 10 kg wet sediment was 5 kg. However, loess was inefficient for Cd and Pb immobilization. Correlation analysis showed that TCLP extraction method could be used to predict the toxicity of Cu, Zn, Cd and Pb in the loess-amended sediment. The pH, EC, OM and CaCO3 of the loess-amended sediment played predominant roles in the TCLP leaching test.


Subject(s)
Geologic Sediments/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , China , Environmental Monitoring , Solubility
5.
Water Sci Technol ; 72(10): 1713-22, 2015.
Article in English | MEDLINE | ID: mdl-26540531

ABSTRACT

With various disadvantages of pollution control technologies for toxic metal-contaminated soil, we mixed contaminated soil with sludge for in situ composting to stabilize toxic metals, so plants are enriched to take up the toxic metals. When simulating the above, we added toxic metal solution into sewage sludge, and then composed it with steel slag to determine inhibition of the availability of toxic metals. When toxic metals were added into sludge, the potential ecological index and geoaccumulation index of Cd became high while Zn was low. Steel slag had an inhibited availability of Cd, and when the adjunction of steel slag was 7%, the availability of Cd was lowest. Steel slag promoted the availability of Zn, and when the adjunction of steel slag was 27%, the availability of Zn was highest. Results showed that during composting, with increasing steel slag, Cd stabilizing time was reached sooner but Zn stabilizing time was slower, and the availability of all metals became lower. In the end, composting inhibited the potential ecological index of Cd, but it promoted the potential ecological index of Zn. Steel slag promoted the stability of Cd and Zn as Fe/Mn oxide-bound and residual species. Therefore, composting sludge and steel slag could be used as an effective inhibitor of Zn and Cd pollution.


Subject(s)
Ecotoxicology/methods , Metals/toxicity , Risk Assessment/methods , Soil Pollutants/toxicity , Cadmium/analysis , Cadmium/chemistry , Metals/analysis , Metals/pharmacokinetics , Organic Chemicals , Sewage , Soil , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Steel , Zinc/analysis , Zinc/chemistry
6.
Waste Manag Res ; 32(3): 179-85, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24616342

ABSTRACT

Sewage sludge and industrial steel slag (SS) pose threats of serious pollution to the environment. The experiments aimed to improve the stabilizing effects of heavy metal Ni and Cd morphology in composting sludge. The total Ni and Cd species distribution and chemical forms in the compost sewage sludge were investigated with the use of compost and co-compost with SS, including degradation. The carbon/nitrogen ratio of piles was regulated with the use of sawdust prior to batch aerobic composting experiments. Results indicated that the co-composting with SS and organic matter humification can contribute to the formation of Fe and Mn hydroxides and that the humus colloid significantly changed Ni and Cd species distribution. The decreased content of Ni and Cd in an unstable state inhibited their biological activity. Conclusions were drawn that an SS amount equal to 7% of the dry sludge mass was optimal value to guarantee the lowest amount of Cd in an unstable state, whereas the amount was 14% for Ni.


Subject(s)
Cadmium/chemistry , Industrial Waste/analysis , Nickel/chemistry , Sewage/chemistry , Soil/chemistry , Steel/chemistry , China , Steel/analysis
7.
Sci Total Environ ; 920: 170959, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38365035

ABSTRACT

Immobilization stands as the most widely adopted remediation technology for addressing heavy metal(loid) contamination in soil. However, it is crucial to acknowledge that this process does not eliminate pollutants; instead, it confines them, potentially leaving room for future mobilization. Presently, our comprehension of the temporal variations in the efficacy of immobilization, particularly in the context of its applicability to arid farmland, remains severely limited. To address this knowledge gap, our research delves deep into the roles of iron-oxidizing bacteria (FeOB) and organic fertilizer (OF) in the simultaneous immobilization of arsenic (As) and cadmium (Cd) in soils. We conducted laboratory incubation and field experiments to investigate these phenomena. When OF was combined with FeOB, a noteworthy transformation of available As and Cd into stable species, such as the residual state and combinations with Fe-Mn/Al oxides, was observed. This transformation coincided with changes in soil properties, including pH, Eh, soluble Fe, and dissolved organic carbon (DOC). Furthermore, we observed synergistic effects between available As and Cd when treated with bacteria and OF individually. The stabilization efficiency of As and Cd, as determined by the Toxicity Characteristic Leaching Procedure, reached its highest values at 33.39 % and 24.67 %, respectively, after 120 days. Nevertheless, the formation of iron­calcium complexes was disrupted due to pH fluctuations. Hence, long-term monitoring and model development are essential to enhance our understanding of the remediation process. The application of organic fertilizer and the use of FeOB in calcareous soil hold promise for the restoration of polluted soil and the maintenance of soil health by mitigating the instability of heavy metals(loid).


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Arsenic/analysis , Soil/chemistry , Fertilizers , Metals, Heavy/analysis , Iron , Bacteria/metabolism , Oxidation-Reduction , Soil Pollutants/analysis
8.
J Environ Manage ; 122: 130-6, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23583753

ABSTRACT

There is always uncertainty in any water quality risk assessment. A Monte Carlo simulation (MCS) is regarded as a flexible, efficient method for characterizing such uncertainties. However, the required computational effort for MCS-based risk assessment is great, particularly when the number of random variables is large and the complicated water quality models have to be calculated by a computationally expensive numerical method, such as the finite element method (FEM). To address this issue, this paper presents an improved method that incorporates an artificial neural network (ANN) into the MCS to enhance the computational efficiency of conventional risk assessment. The conventional risk assessment uses the FEM to create multiple water quality models, which can be time consuming or cumbersome. In this paper, an ANN model was used as a substitute for the iterative FEM runs, and thus, the number of water quality models that must be calculated can be dramatically reduced. A case study on the chemical oxygen demand (COD) pollution risks in the Lanzhou section of the Yellow River in China was taken as a reference. Compared with the conventional risk assessment method, the ANN-MCS-based method can save much computational effort without a loss of accuracy. The results show that the proposed method in this paper is more applicable to assess water quality risks. Because the characteristics of this ANN-MCS-based technique are quite general, it is hoped that the technique can also be applied to other MCS-based uncertainty analysis in the environmental field.


Subject(s)
Monte Carlo Method , Neural Networks, Computer , Risk Assessment , Water Quality , Environmental Monitoring
9.
Environ Sci Pollut Res Int ; 30(16): 46092-46106, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36715804

ABSTRACT

In grassland systems of the semi-arid mining area, the migration, accumulation, and bioavailability of potentially toxic elements (PTEs) are important ecological and health risk issues. Thirty-eight pairs of topsoil (0-20 cm) and plant samples were collected around Baiyin City and in Dongdagou stream valley to investigate the migration of PTEs in soils, transfer of PTEs in soil-plant (shrub and herbage) systems, and assess the risk in soils and plants. The total concentrations of PTE (Hg, As, Cu, Zn, Cd, and Pb) were analyzed following digestion in mixture acid solution, and bioavailable PTE was extracted with a strong chelating agent (DTPA-TEA-CaCl2). The transfer factor (TF) and bioaccumulation factor (BCF) were calculated to examine the migration of PTEs in soil-plant. Hazard quotient (HQ) and total hazard index (THI) were calculated to assess the risk and migration of PTEs in soils. The results showed that PTEs in soils and plants of study area exceeded the soil background value and Hygienic Standard for Feeds. Correlation among the total Hg, As, Cu, Zn, Cd, and Pb in soils of Dongdagou stream valley was significant at p < 0.01. A good correlation was exhibited between PTEs in root/aboveground parts of plants and DTPA-soil extractable. Difference of TF and BCF was existed between Dongdagou stream valley and around Baiyin City. Hg, Cu, Zn, Cd, and Pb were mainly accumulated in soils near the mining area. The calculated THI exceeded 1, and As and Pb were the major risk factors. The ability to absorb and transfer Hg, As, Cu, and Pb of plants was lower in more serious polluted area. As had a stronger migration capacity in study area. PTEs in soils had an adverse health effect for residents, and PTEs in plants may cause toxicity to cattle and sheep.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Animals , Cattle , Sheep , Soil , Metals, Heavy/analysis , Environmental Monitoring/methods , Cadmium , Lead , Plants , Risk Assessment/methods , China , Pentetic Acid , Soil Pollutants/analysis
10.
Sci Total Environ ; 870: 162012, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36737027

ABSTRACT

The contrasting chemical behaviors of two toxic elements, arsenic (As) and cadmium (Cd) in co-contamination calcareous soil and its absorption by crops have not been thoroughly explored, especially in the implementation of the measure of prohibiting the use of wastewater to irrigate farmland. We propose that the present environmental characteristics of ecologically fragile areas and appropriate restoration measures are critical determinant of soil remediation. In this study, the typical field farmland irrigated by industrial and domestic wastewater in the Chinese Loess Plateau for >50 years was selected. The results showed that after the sewage irrigation was stopped, the mean contents of Cd (7.09 mg/kg) and As (13.47 mg/kg) in the soil were still rising, which might be a potential input source. The average values of soil risk indices such as the potential ecological risk (PERI = 2394), pollution load index (PLI > 4 for 60 % of studied samples), and degree of contamination (Dc = 86.6) showed severe soil pollution in the study area. The decrease of soil pH, the loss of soil texture and calcium carbonate were found to be the reasons for the high chemical activity of Cd. The bioconcentration factors (< 0.2) and translocation factor (> 1.0) of Cd indicate that corn is an excluder plant and an ideal phytoremediation method. Thus, 20 % of studied samples were higher than maximum permitted levels of Cd in grain, indicating potential related health hazards. On the contrary, As was mainly adsorbed in calcareous soil, and its bioavailability was lower compared with Cd. The difference between DTPA extraction and sequential extraction may be due to the transformation of chemical forms, resulting in unstable fractions increased the bioavailability of toxic elements. Overall, the findings provide new insights for solutions to manage and repair farmlands under the post-wastewater irrigation period.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Zea mays , Wastewater , Soil Pollutants/analysis , Crops, Agricultural , China , Biodegradation, Environmental , Metals, Heavy/analysis , Environmental Monitoring
11.
Environ Sci Pollut Res Int ; 30(17): 50471-50483, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36795208

ABSTRACT

Soil samples and native plants were collected from abandoned farmlands with a long history of sewage irrigation along Dongdagou stream, Baiyin City. We investigated the concentrations of heavy metal(loid)s (HMMs) in soil-plant system to evaluate the accumulation and transportation ability of HMMs in native plants. Results indicated that soils in study area were severely polluted by Cd, Pb, and As. With the exception of Cd, the correlation between total HMM concentrations in soil and plant tissues was poor. Among all investigated plants, no one was close to the criteria for the HMM concentrations of hyperaccumulators. The concentrations of HMMs in most plants were reached the phytotoxic level and the abandoned farmlands could not be used as forages, which showed that native plants may possess resistance capabilities or high tolerance for As, Cu, Cd, Pb, and Zn. The FTIR (Fourier transform infrared spectrometer) results suggested that the detoxification of HMMs in plants may depend on the functional groups (-OH, C-H, C-O, and N-H) of some compounds. Bioaccumulation factor (BAF), bioconcentration factor (BCF), and biological transfer factor (BTF) were used to identify the accumulation and translocation characteristics of HMMs by native plants. S. glauca had the highest mean values of BTF for Cd (8.07) and Zn (4.75). C. virgata showed the highest mean BAFs for Cd (2.76) and Zn (9.43). P. harmala, A. tataricus, and A. anethifolia also presented high accumulation and translocation abilities for Cd and Zn. High HMMs (As, Cu, Cd, Pb, and Zn) accumulation in the aerial parts of plants may lead to increased accumulation of HMMs in the food chain; additional research is desperately required. This study demonstrated the HM enrichment characteristics of weeds and provided a basis for the management of abandoned farmlands.


Subject(s)
Metals, Heavy , Soil Pollutants , Sewage , Cadmium/analysis , Farms , Lead , Metals, Heavy/analysis , Plants , Soil , Soil Pollutants/analysis , Environmental Monitoring , China
12.
Sci Total Environ ; 863: 160994, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36528947

ABSTRACT

The trace element (TE) contamination of farmland caused by wastewater irrigation threatens food security and food safety. We selected a typical calcareous soil area in western China that has been irrigated with wastewater for >50 years to explore safe use strategies for flax farmland contaminated by cadmium (Cd) and arsenic (As). We found that Cd and As were mainly accumulated in flax roots rather than seeds. However, regardless of the type of TE and acceptor, direct ingestion of the flaxseed would seriously endanger human health (hazard quotient >1). According to the results of redundancy analysis and Pearson correlation analysis, the concentration of Cd and As in flaxseed depended on the concentration of soil total TE, Olsen phosphorus, dissolved organic carbon, soil organic matter, and active calcium carbonate (CaCO3). This was largely because the pH and total CaCO3 content in topsoil of flax farmland decreased by 1.05 units and 37 %, respectively, compared with their background levels before wastewater irrigation. Interestingly, after pressing, Cd and As in flaxseed transferred to flaxseed oil were 3.87-10.55 % and 17.21-30.48 %, respectively, which led to an acceptable risk of adults and children (hazard quotient <1) consuming flaxseed oil. Our results suggest that with the production of flaxseed oil as the goal, the long-term wastewater-irrigated calcareous land can be safely utilized while obtaining income.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Trace Elements , Child , Adult , Humans , Wastewater , Cadmium/analysis , Metals, Heavy/analysis , Linseed Oil , Soil Pollutants/analysis , Soil/chemistry , Arsenic/analysis , Trace Elements/analysis , Agricultural Irrigation/methods
13.
Environ Sci Pollut Res Int ; 30(4): 10063-10078, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36066802

ABSTRACT

Sewage irrigation has solved the shortage of agricultural water and increased the content of heavy metal(loid)s (HMs) in soil-crop systems, which harms human health via the food chain. In this study, 43 pairs of soil and corn samples (leaf, stem1, stem2, stem3, root, husk, grain, and corncob) were collected in the Dongdagou (DDG) and Xidagou (XDG) streams of Baiyin City. Fraction and transfer of As and Hg were investigated, and toxicological effects and contamination were assessed in soil-corn systems. The results showed that the mean values of As and Hg in soil were 33.79 mg/kg and 0.96 mg/kg, respectively, which exceeded the soil background values in Gansu Province. As and Hg are mainly dominated by the residual fraction. Total and bioavailability contributed significantly to As and Hg accumulation in corn, with root, stem3, and leaf accumulating more strongly. The results based on the bioavailability concentration soil-corn transfer factor indicated that As and Hg tended to accumulate more in the root, stem3, and leaf and less in grain, and further assessment of the human health effects of consuming contaminated cron is needed. Scanning electron microscope (SEM) and Fourier transform infrared (FTIR) results showed that As and Hg were not significantly toxic to corn parts, indicating morphology. As and Hg were bound to hydroxyl groups in the outer epidermal cell wall of the roots, thereby reducing upward translocation. The trinity assessment (TA) model results indicated that the most severe contamination was found in root and stem1. The TA provides a practical tool for soil-cron systems and helps develop management strategies to prevent ecological hazards.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Soil Pollutants , Humans , Mercury/analysis , Arsenic/analysis , Soil , Zea mays/metabolism , Biological Availability , Environmental Monitoring/methods , Metals, Heavy/analysis , Edible Grain/chemistry , Soil Pollutants/analysis , Risk Assessment , China
14.
Environ Sci Pollut Res Int ; 30(26): 68258-68270, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119488

ABSTRACT

In arid soil with low-iron and high-calcium carbonate contents, the fate of arsenic (As) is mainly controlled by the contents of calcium and organic matter in the soil. However, there is still a lack of knowledge about their interaction and that effect on their absorption by maize. The purpose of this study was to explore the long-term immobilization and repair mechanism of in situ As-contaminated farmland. We designed three treatments: iron-oxidizing bacteria (FeOB), organic fertilizer, FeOB and organic fertilizer added in combination. After 140-day field farmland remediation trial, the results showed that the FeOB can effectively immobilize the water-soluble As (FS1) in soil, and the organic fertilizer promoted the remediation of FeOB. In addition, the content of As in maize grains was reduced after treatment by FeOB and organic fertilizer. The XRD and XPS analysis of the topsoil showed that the combined treatment of FeOB and organic fertilizer promoted the formation of calcium arsenate mineral with low solubility and high stability; As(III) would gradually transform into As(V). The biological iron (hydr)oxide can increase the contents of Fe and As in the rhizosphere and form iron plaques on the surface of the roots by SEM-EDS analysis of maize root. Collectively, these results clarify the main biogeochemical ways to control the fate of As in calcareous soils with low-iron and low-organic matter contents and provide a basis for in situ remediation of As.


Subject(s)
Arsenic , Environmental Restoration and Remediation , Soil Pollutants , Arsenic/analysis , Fertilizers/analysis , Soil Pollutants/analysis , Iron/chemistry , Soil/chemistry , Bacteria , Oxidation-Reduction
15.
Environ Sci Pollut Res Int ; 29(19): 27636-27650, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34982386

ABSTRACT

Ecological environment of remote grassland has become a problem in many countries due to mining, tourism, grazing, and other human activities. In this study, a total of 15 pairs of soil-herbage samples were collected in the northeast of the Tibet Plateau to study the relationship between physicochemical properties and content of trace elements in soils at different elevation, and to examine the accumulation and fractionation of heavy metals in soil-herbage systems. In addition, the ecological risk of the subalpine grassland was also assessed. The average concentrations of Hg, As, Cu, Zn, Pb, Cd, Cr, and Mn in soil were higher than their background values of Gansu soil, but the average concentrations of these heavy metals in herbage satisfied Hygienical Standard for Feeds. The speciation analysis of heavy metals in soil indicated that the exchangeable content of heavy metal was very low, except Pb, Cd, and Mn. There was a linear relationship between pH, CaCO3, total phosphorus (TP), organic matter (OM), concentrations of Hg, As, Zn, Pb, Cr, and Mn in soils, dry weight of herbage, and elevation, while there was a quadratic curve trend between Cu, Cd in soils, and elevation. The results of risk assessment showed that there was no obvious ecological risk in the study area.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Trace Elements , Cadmium/analysis , China , Environmental Monitoring , Grassland , Humans , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Tibet , Trace Elements/analysis
16.
Environ Sci Pollut Res Int ; 29(4): 5526-5540, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34424469

ABSTRACT

There are many studies on the treatment of heavy metals by manganese-oxidizing bacteria and the reaction is good; the problem of compound pollution of heavy metals in soil has been difficult to solve. In this study, the application of manganese-oxidizing bacteria in soil was studied. The tolerance of manganese-oxidizing strains (Pseudomonas taiwanensis) to environmental conditions and the treatment effect of heavy metals As, Pb, and Cd in aqueous solution were investigated, and the effect of iron-manganese ratio on the treatment effect was discussed. The results showed that the suitable pH conditions for the growth of P. taiwanensis were 5-9, and the salt tolerance was 6% (by sodium chloride). The tolerant concentrations for heavy metals As(V) and Mn(II) were 500 mg L-1 and 120 mg L-1, respectively. The strains were enriched by nutrient broth medium. After the logarithmic phase, the bacterial suspension was mixed with ATCC#279 medium at a ratio of 1:10, and a certain amount (10 mg L-1) of Mn(II) was added. The results of As, Pb, and Cd removal in the composite polluted water phase were 22.09%, 30.75%, and 35.33%, respectively. The molar ratio of manganese and iron affected the removal efficiency of single arsenic, the highest efficiency is 68%, and the ratio of iron to manganese is 1:5. However, when the soil was treated by the same method, the results showed that not all metals were passivated, such as Cu. At the same time, for As, Pb, and Cd, the treatment effects in soil were worse than those in water, perhaps more consideration should be given to environmental conditions, such as soil moisture and temperature, when manganese-oxidizing bacteria are used to treat soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Bacteria , Manganese/analysis , Metals, Heavy/analysis , Oxidation-Reduction , Soil , Soil Pollutants/analysis
17.
Sci Total Environ ; 825: 154057, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35217035

ABSTRACT

Remediation of As(III) by use of Fe(II) oxidation bacteria (FeOB) in iron-rich soils has been reported, but seldom used in the iron-deficient soil of arid areas. This study was aimed at selecting native bacterial strains to remediate As pollution in arid soils, coupled with the addition of Fe(II). The used methods included: The selection of two FeOB strains; XRD for solid phase identification based on peaks; SEM with EDS for morphology identification of newly formed minerals with chemical compositions; XPS for surface chemistry of the minerals; FTIR for functional groups of precipitates and 3DEEM for EPS determination, etc. The results were as follows: Sharp decrement curves of As(III) and NO3- with Fe(II) and total Fe contents and increment of NO2-; NH4+ fluctuating during the experimental period of 11 days; and precipitation of Fe(III) hydroxides together with As(III) with broken FeOBs due to encrustation in the SEM scan. It was concluded that two selected Pseudomonas strains have NAFO functionality by addition of iron as iron reduction-oxidation pair in the arid soil, further potentially fixing NH4+ while As(III) can be effectively remediated through the FeOB participation in forms of adsorption and co-precipitation of Fe(OH)3 through an oxidation of Fe(II) process.


Subject(s)
Arsenic , Bacteria , Ferric Compounds/chemistry , Ferrous Compounds , Iron , Minerals/chemistry , Nitrates , Nitrogen Oxides , Oxidation-Reduction , Soil/chemistry
18.
J Hazard Mater ; 424(Pt A): 127224, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34583157

ABSTRACT

Screening and cultivating crop varieties with low Cd accumulation is an effective way to safely utilize the Cd slightly contaminated soil. The characteristics and mechanism of Cd uptake by 13 wheat varieties in two calcareous soils with similar Cd contamination level but different P supply level were studied. The grain Cd concentration of almost all varieties in low-P soil was significantly higher than that in high-P soil and exceeded the maximum level of 0.2 mg kg-1 recommended by the Codex Alimentarius Commission. The pH value of low-P soil was significantly lower than that of high-P soil by 0.27 units, while leaf [Mn] (proxy for rhizosphere carboxylates) and the activities of soil alkaline phosphatase and phytase were significantly higher than those of high-P soil by 35%, 55%, and 286%, respectively. The exchangeable Cd concentration in low-P soil was 2.93 times higher than that in high-P soil, while the Cd concentration of oxides and organic species was significantly lower than that in high-P soil by 21% and 64%, respectively, collectively increasing soluble Cd concentration in low-P soil by 38%. In low-P calcareous soil, P mobilization induced the change of root-zone microenvironment, resulting in the mobilization of Cd.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Phosphorus , Soil , Soil Pollutants/analysis , Triticum
19.
J Sci Food Agric ; 91(2): 377-84, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-21086461

ABSTRACT

BACKGROUND: Crops grown in soils contaminated by heavy metals are an important avenue for toxic metals entering the human food chain. The objectives of our study were to investigate the accumulation and distribution of cadmium (Cd) and lead (Pb) in wheat plants cultivated in arid soils spiked with different doses of heavy metal, as well as bioavailability of these metals in the contaminated arid soils from the oasis, north-west China. RESULTS: The concentrations of Cd in the roots of wheat plants were about 5, 14 and 8 times higher than those in the shoots, shells and grains, respectively. The concentrations of Pb in the roots were about 23, 76 and 683 times higher than those in the shoots, shells and grains, respectively. Grains contained 11-14% and 0.1-0.2% of Cd and Pb found in roots of wheat plants. The bioconcentration factor (BCF) is the ratio of metal concentration in plant tissues and metal concentration in their rooted soils. The average BCF of Cd and Pb in grains was 0.6270 and 0.0007. Cd and Pb contents in different parts of wheat plants mainly correlated with the bound-to-carbonate metal fractions in contaminated arid soils. CONCLUSION: The preliminary study indicated that Cd and Pb were predominantly accumulated and distributed in wheat roots and shoots, and only a small proportion of these metals can reach the grains. The carbonate fractions mainly contributed to Cd and Pb bioavailability in contaminated arid soils.


Subject(s)
Cadmium/metabolism , Edible Grain/metabolism , Lead/metabolism , Plant Structures/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Triticum/metabolism , Biological Availability , Carbonates/metabolism , China , Food Chain , Food Contamination
20.
J Environ Sci (China) ; 23(2): 275-81, 2011.
Article in English | MEDLINE | ID: mdl-21517001

ABSTRACT

A pot experiment was conducted to study the relationship between distribution of cadmium (Cd) and zinc (Zn) and their availability. to cole (Brassica campestris L.) grown in the multi-metal contaminated oasis soil in northwest of China. The results showed that Cd and Zn in the unpolluted oasis soil was mainly found in the residual fractionation, however, with increasing contents of Cd and Zn in the oasis soil, the distribution of Cd and Zn changed significantly. The growth of cole could be promoted by low Cd and Zn concentration, but significantly restrained by high concentrations. There was antagonistic effect among Cd and Zn in the multi-metals contaminated oasis soil. Stepwise regression analysis between fractionations distribution coefficients of the two meals in the soil and their contents in cole showed that both Cd and Zn in the exchangeable fractionation in the oasis soil made the most contribution on the uptake of Cd and Zn in cole. The bio-concentration factor (BCF) of Cd was greater than Zn in cole, and BCFs of the two metals in leaves were greater than those in roots. The translocation factors of the two metals in cole were greater than 1, and the two metals mainly accumulated in the edible parts in cole. Therefore, cole is not a suitable vegetable for the oasis soil because of the plants notable contamination by heavy metals.


Subject(s)
Brassica/metabolism , Cadmium/pharmacokinetics , Soil Pollutants/toxicity , Zinc/pharmacokinetics , Biological Availability , Cadmium/chemistry , China , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL