Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Circulation ; 150(8): 611-621, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38666382

ABSTRACT

BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.


Subject(s)
Induced Pluripotent Stem Cells , Macaca fascicularis , Myocardial Infarction , Myocytes, Cardiac , Spheroids, Cellular , Animals , Induced Pluripotent Stem Cells/transplantation , Induced Pluripotent Stem Cells/cytology , Humans , Myocytes, Cardiac/transplantation , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Spheroids, Cellular/transplantation , Regeneration , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/pathology , Male , Stem Cell Transplantation/methods , Disease Models, Animal
2.
J Mol Cell Cardiol ; 174: 77-87, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403760

ABSTRACT

Advances in stem cell biology have facilitated cardiac regeneration, and many animal studies and several initial clinical trials have been conducted using human pluripotent stem cell-derived cardiomyocytes (PSC-CMs). Most preclinical and clinical studies have typically transplanted PSC-CMs via the following two distinct approaches: direct intramyocardial injection or epicardial delivery of engineered heart tissue. Both approaches present common disadvantages, including a mandatory thoracotomy and poor engraftment. Furthermore, a standard transplantation approach has yet to be established. In this study, we tested the feasibility of performing intracoronary administration of PSC-CMs based on a commonly used method of transplanting somatic stem cells. Six male cynomolgus monkeys underwent intracoronary administration of dispersed human PSC-CMs or PSC-CM aggregates, which are called cardiac spheroids, with multiple cell dosages. The recipient animals were sacrificed at 4 weeks post-transplantation for histological analysis. Intracoronary administration of dispersed human PSC-CMs in the cynomolgus monkeys did not lead to coronary embolism or graft survival. Although the transplanted cardiac spheroids became partially engrafted, they also induced scar formation due to cardiac ischemic injury. Cardiac engraftment and scar formation were reasonably consistent with the spheroid size or cell dosage. These findings indicate that intracoronary transplantation of PSC-CMs is an inefficient therapeutic approach.


Subject(s)
Myocytes, Cardiac , Pluripotent Stem Cells , Animals , Humans , Male , Cicatrix/pathology , Macaca fascicularis , Myocytes, Cardiac/pathology , Pluripotent Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL