Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 143(10): 872-881, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37992218

ABSTRACT

ABSTRACT: Primary hemophagocytic lymphohistiocytosis (pHLH) is a life-threatening hyperinflammatory syndrome that develops mainly in patients with genetic disorders of lymphocyte cytotoxicity and X-linked lymphoproliferative syndromes. Previous studies with etoposide-based treatment followed by hematopoetic stem cell transplantation (HSCT) resulted in 5-year survival of 50% to 59%. Contemporary data are lacking. We evaluated 88 patients with pHLH documented in the international HLH registry from 2016-2021. In 12 of 88 patients, diagnosis was made without HLH activity, based on siblings or albinism. Major HLH-directed drugs (etoposide, antithymocyte globulin, alemtuzumab, emapalumab, ruxolitinib) were administered to 66 of 76 patients who were symptomatic (86% first-line etoposide); 16 of 57 patients treated with etoposide and 3 of 9 with other first-line treatment received salvage therapy. HSCT was performed in 75 patients; 7 patients died before HSCT. Three-year probability of survival (pSU) was 82% (confidence interval [CI], 72%-88%) for the entire cohort and 77% (CI, 64%-86%) for patients receiving first-line etoposide. Compared with the HLH-2004 study, both pre-HSCT and post-HSCT survival of patients receiving first-line etoposide improved, 83% to 91% and 70% to 88%. Differences to HLH-2004 included preferential use of reduced-toxicity conditioning and reduced time from diagnosis to HSCT (from 148 to 88 days). Three-year pSU was lower with haploidentical (4 of 9 patients [44%]) than with other donors (62 of 66 [94%]; P < .001). Importantly, early HSCT for patients who were asymptomatic resulted in 100% survival, emphasizing the potential benefit of newborn screening. This contemporary standard-of-care study of patients with pHLH reveals that first-line etoposide-based therapy is better than previously reported, providing a benchmark for novel treatment regimes.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphohistiocytosis, Hemophagocytic , Lymphoproliferative Disorders , Infant, Newborn , Humans , Etoposide/therapeutic use , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/diagnosis , Treatment Outcome , Hematopoietic Stem Cell Transplantation/methods , Lymphoproliferative Disorders/etiology
2.
J Pathol ; 262(2): 147-160, 2024 02.
Article in English | MEDLINE | ID: mdl-38010733

ABSTRACT

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Adolescent , Humans , Genes, p53 , Osteosarcoma/genetics , Osteosarcoma/pathology , Mutation , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Promoter Regions, Genetic/genetics , Gene Fusion , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Lancet Oncol ; 25(7): 922-932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38936379

ABSTRACT

BACKGROUND: Neuroblastoma is the most common extracranial solid tumour in children. Relapsed or refractory neuroblastoma is associated with a poor outcome. We assessed the combination of irinotecan-temozolomide and dasatinib-rapamycin (RIST) in patients with relapsed or refractory neuroblastoma. METHODS: The multicentre, open-label, randomised, controlled, phase 2, RIST-rNB-2011 trial recruited from 40 paediatric oncology centres in Germany and Austria. Patients aged 1-25 years with high-risk relapsed (defined as recurrence of all stage IV and MYCN amplification stages, after response to treatment) or refractory (progressive disease during primary treatment) neuroblastoma, with Lansky and Karnofsky performance status at least 50%, were assigned (1:1) to RIST (RIST group) or irinotecan-temozolomide (control group) by block randomisation, stratified by MYCN status. We compared RIST (oral rapamycin [loading 3 mg/m2 on day 1, maintenance 1 mg/m2 on days 2-4] and oral dasatinib [2 mg/kg per day] for 4 days with 3 days off, followed by intravenous irinotecan [50 mg/m2 per day] and oral temozolomide [150 mg/m2 per day] for 5 days with 2 days off; one course each of rapamycin-dasatinib and irinotecan-temozolomide for four cycles over 8 weeks, then two courses of rapamycin-dasatinib followed by one course of irinotecan-temozolomide for 12 weeks) with irinotecan-temozolomide alone (with identical dosing as experimental group). The primary endpoint of progression-free survival was analysed in all eligible patients who received at least one course of therapy. The safety population consisted of all patients who received at least one course of therapy and had at least one post-baseline safety assessment. This trial is registered at ClinicalTrials.gov, NCT01467986, and is closed to accrual. FINDINGS: Between Aug 26, 2013, and Sept 21, 2020, 129 patients were randomly assigned to the RIST group (n=63) or control group (n=66). Median age was 5·4 years (IQR 3·7-8·1). 124 patients (78 [63%] male and 46 [37%] female) were included in the efficacy analysis. At a median follow-up of 72 months (IQR 31-88), the median progression-free survival was 11 months (95% CI 7-17) in the RIST group and 5 months (2-8) in the control group (hazard ratio 0·62, one-sided 90% CI 0·81; p=0·019). Median progression-free survival in patients with amplified MYCN (n=48) was 6 months (95% CI 4-24) in the RIST group versus 2 months (2-5) in the control group (HR 0·45 [95% CI 0·24-0·84], p=0·012); median progression-free survival in patients without amplified MYCN (n=76) was 14 months (95% CI 9-7) in the RIST group versus 8 months (4-15) in the control group (HR 0·84 [95% CI 0·51-1·38], p=0·49). The most common grade 3 or worse adverse events were neutropenia (54 [81%] of 67 patients given RIST vs 49 [82%] of 60 patients given control), thrombocytopenia (45 [67%] vs 41 [68%]), and anaemia (39 [58%] vs 38 [63%]). Nine serious treatment-related adverse events were reported (five patients given control and four patients given RIST). There were no treatment-related deaths in the control group and one in the RIST group (multiorgan failure). INTERPRETATION: RIST-rNB-2011 demonstrated that targeting of MYCN-amplified relapsed or refractory neuroblastoma with a pathway-directed metronomic combination of a multkinase inhibitor and an mTOR inhibitor can improve progression-free survival and overall survival. This exclusive efficacy in MYCN-amplified, relapsed neuroblastoma warrants further investigation in the first-line setting. FUNDING: Deutsche Krebshilfe.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Dasatinib , Irinotecan , Neoplasm Recurrence, Local , Neuroblastoma , Sirolimus , Temozolomide , Humans , Temozolomide/administration & dosage , Temozolomide/therapeutic use , Irinotecan/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Male , Female , Neuroblastoma/drug therapy , Neuroblastoma/mortality , Neuroblastoma/pathology , Neuroblastoma/genetics , Child, Preschool , Child , Dasatinib/administration & dosage , Dasatinib/therapeutic use , Dasatinib/adverse effects , Adolescent , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Infant , Adult , Sirolimus/administration & dosage , Sirolimus/therapeutic use , Young Adult , Germany , Drug Resistance, Neoplasm , Progression-Free Survival
4.
Lab Invest ; 104(1): 100283, 2024 01.
Article in English | MEDLINE | ID: mdl-37931683

ABSTRACT

Osteosarcoma is the most common primary bone malignancy, often detected in children and adolescents and commonly associated with TP53 alterations along with a high number of chromosomal rearrangements. However, osteosarcoma can affect patients of any age, and some tumors display less genetic complexity. Besides TP53 variants, data on key driving mutations are lacking for many osteosarcomas, particularly those affecting adults. To detect osteosarcoma-specific alterations, we screened transcriptomic and genomic sequencing and copy number data from 150 bone tumors originally diagnosed as osteosarcomas. To increase the precision in gene fusion detection, we developed a bioinformatic tool denoted as NAFuse, which extracts gene fusions that are verified at both the genomic and transcriptomic levels. Apart from the already reported genetic subgroups of osteosarcoma with TP53 structural variants, or MDM2 and/or CDK4 amplification, we did not identify any recurrent genetic driver that signifies the remaining cases. Among the plethora of mutations identified, we found genetic alterations characteristic of, or similar to, those of other bone and soft tissue tumors in 8 cases. These mutations were found in tumors with relatively few other genetic alterations or in adults. Due to the lack of clinical context and available tissue, we can question the diagnosis only on a genetic basis. However, our findings support the notion that osteosarcomas with few chromosomal alterations or adult onset seem genetically distinct from conventional osteosarcomas of children and adolescents.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adult , Adolescent , Child , Humans , Proto-Oncogene Proteins c-mdm2/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Mutation , Bone Neoplasms/genetics , Base Sequence
5.
Gastroenterology ; 164(4): 579-592.e8, 2023 04.
Article in English | MEDLINE | ID: mdl-36586540

ABSTRACT

BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Brain Neoplasms/diagnosis , Genotype , DNA Mismatch Repair/genetics , Mismatch Repair Endonuclease PMS2/genetics
6.
Haematologica ; 109(2): 422-430, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37584291

ABSTRACT

Monosomy 7 is the most common cytogenetic abnormality in pediatric myelodysplastic syndrome (MDS) and associated with a high risk of disease progression. However, in young children, spontaneous loss of monosomy 7 with concomitant hematologic recovery has been described, especially in the presence of germline mutations in SAMD9 and SAMD9L genes. Here, we report on our experience of close surveillance instead of upfront hematopoietic stem cell transplantation (HSCT) in seven patients diagnosed with SAMD9L syndrome and monosomy 7 at a median age of 0.6 years (range, 0.4-2.9). Within 14 months from diagnosis, three children experienced spontaneous hematological remission accompanied by a decrease in monosomy 7 clone size. Subclones with somatic SAMD9L mutations in cis were identified in five patients, three of whom attained hematological remission. Two patients acquired RUNX1 and EZH2 mutations during the observation period, of whom one progressed to myelodysplastic syndrome with excess of blasts (MDS-EB). Four patients underwent allogeneic HSCT at a median time of 26 months (range, 14-40) from diagnosis for MDSEB, necrotizing granulomatous lymphadenitis, persistent monosomy 7, and severe neutropenia. At last follow-up, six patients were alive, while one passed away due to transplant-related causes. These data confirm previous observations that monosomy 7 can be transient in young children with SAMD9L syndrome. However, they also indicate that delaying HSCT poses a substantial risk of severe infection and disease progression. Finally, surveillance of patients with SAMD9L syndrome and monosomy 7 is critical to define the evolving genetic landscape and to determine the appropriate timing of HSCT (clinicaltrials gov. Identifier: NCT00662090).


Subject(s)
Chromosome Deletion , Myelodysplastic Syndromes , Humans , Child , Child, Preschool , Infant , Remission, Spontaneous , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Disease Progression , Transcription Factors/genetics , Monosomy , Chromosomes, Human, Pair 7/genetics , Intracellular Signaling Peptides and Proteins/genetics
7.
Nature ; 555(7696): 321-327, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29489754

ABSTRACT

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Subject(s)
Genome, Human/genetics , Genomics , Mutation/genetics , Neoplasms/classification , Neoplasms/genetics , Adolescent , Adult , Child , Chromothripsis , Cohort Studies , DNA Copy Number Variations/genetics , Diploidy , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Humans , Molecular Targeted Therapy , Mutation Rate , Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Young Adult
9.
Mod Pathol ; 35(9): 1204-1211, 2022 09.
Article in English | MEDLINE | ID: mdl-35347251

ABSTRACT

Rearrangements of the transcription factors FOS and FOSB have recently been identified as the genetic driver event underlying osteoid osteoma and osteoblastoma. Nuclear overexpression of FOS and FOSB have since then emerged as a reliable surrogate marker despite limitations in specificity and sensitivity. Indeed, osteosarcoma can infrequently show nuclear FOS expression and a small fraction of osteoblastomas seem to arise independent of FOS/FOSB rearrangements. Acid decalcification and tissue preservation are additional factors that can negatively influence immunohistochemical testing and make diagnostic decision-making challenging in individual cases. Particularly aggressive appearing osteoblastomas, also referred to as epithelioid osteoblastomas, and osteoblastoma-like osteosarcoma can be difficult to distinguish, underlining the need for additional markers to support the diagnosis. Methylation and copy number profiling, a technique well established for the classification of brain tumors, might fill this gap. Here, we set out to comprehensively characterize a series of 77 osteoblastomas by immunohistochemistry, fluorescence in-situ hybridization as well as copy number and methylation profiling and compared our findings to histologic mimics. Our results show that osteoblastomas are uniformly characterized by flat copy number profiles that can add certainty in reaching the correct diagnosis. The methylation cluster formed by osteoblastomas, however, so far lacks specificity and can be misleading in individual cases.


Subject(s)
Bone Neoplasms , Osteoblastoma , Osteosarcoma , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , DNA Copy Number Variations , Humans , Methylation , Osteoblastoma/diagnosis , Osteoblastoma/genetics , Osteoblastoma/metabolism , Osteosarcoma/pathology
10.
BMC Cancer ; 22(1): 652, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698215

ABSTRACT

BACKGROUND: Integrative medicine is used frequently alongside chemotherapy treatment in pediatric oncology, but little is known about the influence on toxicity. This German, multi-center, open-label, randomized controlled trial assessed the effects of complementary treatments on toxicity related to intensive-phase chemotherapy treatment in children aged 1-18 with the primary outcome of the toxicity sum score. Secondary outcomes were chemotherapy-related toxicity, overall and event-free survival after 5 years in study patients. METHODS: Intervention and control were given standard chemotherapy according to malignancy & tumor type. The intervention arm was provided with anthroposophic supportive treatment (AST); given as anthroposophic base medication (AMP), as a base medication for all patients and additional on-demand treatment tailored to the intervention malignancy groups. The control was given no AMP. The toxicity sum score (TSS) was assessed using NCI-CTC scales. RESULTS: Data of 288 patients could be analyzed. Analysis did not reveal any statistically significant differences between the AST and the control group for the primary endpoint or the toxicity measures (secondary endpoints). Furthermore, groups did not differ significantly in the five-year overall and event-free survival follow up. DISCUSSION: In this trial findings showed that AST was able to be safely administered in a clinical setting, although no beneficial effects of AST between group toxicity scores, overall or event-free survival were shown.


Subject(s)
Integrative Medicine , Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Child , Follow-Up Studies , Humans , Medical Oncology , Neoplasms/drug therapy , Neoplasms/etiology
11.
PLoS Comput Biol ; 17(11): e1009562, 2021 11.
Article in English | MEDLINE | ID: mdl-34762643

ABSTRACT

Although osteosarcoma (OS) is a rare cancer, it is the most common primary malignant bone tumor in children and adolescents. BRCAness is a phenotypical trait in tumors with a defect in homologous recombination repair, resembling tumors with inactivation of BRCA1/2, rendering these tumors sensitive to poly (ADP)-ribose polymerase inhibitors (PARPi). Recently, OS was shown to exhibit molecular features of BRCAness. Our goal was to develop a method complementing existing genomic methods to aid clinical decision making on administering PARPi in OS patients. OS samples with DNA-methylation data were divided to BRCAness-positive and negative groups based on the degree of their genomic instability (n = 41). Methylation probes were ranked according to decreasing variance difference between two groups. The top 2000 probes were selected for training and cross-validation of the random forest algorithm. Two-thirds of available OS RNA-Seq samples (n = 17) from the top and bottom of the sample list ranked according to genome instability score were subjected to differential expression and, subsequently, to gene set enrichment analysis (GSEA). The combined accuracy of trained random forest was 85% and the average area under the ROC curve (AUC) was 0.95. There were 449 upregulated and 1,079 downregulated genes in the BRCAness-positive group (fdr < 0.05). GSEA of upregulated genes detected enrichment of DNA replication and mismatch repair and homologous recombination signatures (FWER < 0.05). Validation of the BRCAness classifier with an independent OS set (n = 20) collected later in the course of study showed AUC of 0.87 with an accuracy of 90%. GSEA signatures computed for this test set were matching the ones observed in the training set enrichment analysis. In conclusion, we developed a new classifier based on DNA-methylation patterns that detects BRCAness in OS samples with high accuracy. GSEA identified genome instability signatures. Machine-learning and gene expression approaches add new epigenomic and transcriptomic aspects to already established genomic methods for evaluation of BRCAness in osteosarcoma and can be extended to cancers characterized by genome instability.


Subject(s)
Bone Neoplasms/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Osteosarcoma/genetics , DNA Repair , Genomic Instability , Humans
12.
J Pathol ; 254(5): 556-566, 2021 08.
Article in English | MEDLINE | ID: mdl-33963544

ABSTRACT

Osteosarcomas are aggressive primary tumors of bone that are typically detected in locally advanced stages; however, which genetic mutations drive the cancer before its clinical detection remain unknown. To identify these events, we performed longitudinal genome-sequencing analysis of 12 patients with metastatic or refractory osteosarcoma. Phylogenetic and molecular clock analyses were carried out next to identify actionable mutations, and these were validated by integrating data from additional 153 osteosarcomas and pre-existing functional evidence from mouse PDX models. We found that the earliest and thus clinically most promising mutations affect the cell cycle G1 transition, which is guarded by cyclins D3, E1, and cyclin-dependent kinases 2, 4, and 6. Cell cycle G1 alterations originate no more than a year before the primary tumor is clinically detected and occur in >90% and 50% of patients of the discovery and validation cohorts, respectively. In comparison, other cancer driver mutations could be acquired at any evolutionary stage and often do not become pervasive. Consequently, our data support that the repertoire of actionable mutations present in every osteosarcoma cell is largely limited to cell cycle G1 mutations. Since they occur in mutually exclusive combinations favoring either CDK2 or CDK4/6 pathway activation, we propose a new genomically-based algorithm to direct patients to correct clinical trial options. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Algorithms , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , G1 Phase Cell Cycle Checkpoints/genetics , Osteosarcoma/genetics , Bone Neoplasms/pathology , Humans , Mutation , Osteosarcoma/pathology , Phylogeny
13.
J Med Genet ; 58(1): 20-24, 2021 01.
Article in English | MEDLINE | ID: mdl-32179705

ABSTRACT

BACKGROUND: Although considerable effort has been put into decoding of the osteosarcoma genome, very little is known about germline mutations that underlie this primary malignant tumour of bone. METHODS AND RESULTS: We followed here a coincidental finding in a multiple endocrine neoplasia family in which a 32-year-old patient carrying a germline pathogenic RET mutation developed an osteosarcoma 2 years after the resection of a medullary thyroid carcinoma. Sequencing analysis of additional 336 patients with osteosarcoma led to the identification of germline activating mutations in the RET proto-oncogene in three cases and somatic amplifications of the gene locus in five matched tumours (4%, n=5/124 tumours). Functional analysis of the pathogenic variants together with an integrative analysis of osteosarcoma genomes confirmed that the mutant RET proteins couple functional kinase activity to dysfunctional ligand binding. RET mutations further co-operated with alterations in TP53 and RB1, suggesting that osteosarcoma pathogenesis bears reminiscence to the stepwise model of medullary thyroid carcinoma. CONCLUSIONS: After Li-Fraumeni-predisposing mutations in TP53, RET becomes the second most mutated cancer-predisposing gene in the germline of patients with osteosarcoma. Hence, early identification of RET mutation carriers can help to identify at-risk family members and carry out preventive measures.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Osteosarcoma/genetics , Proto-Oncogene Proteins c-ret/genetics , Retinoblastoma Binding Proteins/genetics , Thyroid Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Carcinoma, Neuroendocrine/complications , Carcinoma, Neuroendocrine/epidemiology , Carcinoma, Neuroendocrine/pathology , Female , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Humans , Male , Osteosarcoma/complications , Osteosarcoma/epidemiology , Osteosarcoma/pathology , Pediatrics , Proto-Oncogene Mas , Thyroid Neoplasms/complications , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/pathology
14.
J Med Genet ; 57(4): 269-273, 2020 04.
Article in English | MEDLINE | ID: mdl-31494577

ABSTRACT

INTRODUCTION: Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary cancer syndromes associated with mismatch repair (MMR) deficiency. Tumours show microsatellite instability (MSI), also reported at low levels in non-neoplastic tissues. Our aim was to evaluate the performance of high-sensitivity MSI (hs-MSI) assessment for the identification of LS and CMMRD in non-neoplastic tissues. MATERIALS AND METHODS: Blood DNA samples from 131 individuals were grouped into three cohorts: baseline (22 controls), training (11 CMMRD, 48 LS and 15 controls) and validation (18 CMMRD and 18 controls). Custom next generation sequencing panel and bioinformatics pipeline were used to detect insertions and deletions in microsatellite markers. An hs-MSI score was calculated representing the percentage of unstable markers. RESULTS: The hs-MSI score was significantly higher in CMMRD blood samples when compared with controls in the training cohort (p<0.001). This finding was confirmed in the validation set, reaching 100% specificity and sensitivity. Higher hs-MSI scores were detected in biallelic MSH2 carriers (n=5) compared with MSH6 carriers (n=15). The hs-MSI analysis did not detect a difference between LS and control blood samples (p=0.564). CONCLUSIONS: The hs-MSI approach is a valuable tool for CMMRD diagnosis, especially in suspected patients harbouring MMR variants of unknown significance or non-detected biallelic germline mutations.


Subject(s)
Brain Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms/genetics , DNA-Binding Proteins/genetics , Microsatellite Instability , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary/genetics , Adolescent , Adult , Brain Neoplasms/blood , Brain Neoplasms/pathology , Child , Child, Preschool , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/blood , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Female , Germ-Line Mutation/genetics , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Neoplastic Syndromes, Hereditary/blood , Neoplastic Syndromes, Hereditary/pathology , Young Adult
15.
J Pathol ; 248(1): 116-122, 2019 05.
Article in English | MEDLINE | ID: mdl-30549028

ABSTRACT

Non-ossifying fibroma (NOF), which occasionally results in pathologic fracture, is considered the most common benign and self-limiting lesion of the growing skeleton. By DNA sequencing we have identified hotspot KRAS, FGFR1 and NF1 mutations in 48 of 59 patients (81.4%) with NOF, at allele frequencies ranging from 0.04 to 0.61. Our findings define NOF as a genetically driven neoplasm caused in most cases by activated MAP-kinase signalling. Interestingly, this driving force either diminishes over time or at least is not sufficient to prevent autonomous regression and resolution. Beyond its contribution to a better understanding of the molecular pathogenesis of NOF, this study adds another benign lesion to the spectrum of KRAS- and MAP-kinase signalling-driven tumours. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Bone Neoplasms/genetics , Fibroma/genetics , MAP Kinase Signaling System/genetics , Mutation , Adolescent , Bone Neoplasms/pathology , DNA Mutational Analysis/methods , Female , Fibroma/pathology , Genetic Predisposition to Disease , Humans , Male , Neurofibromin 1/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Exome Sequencing/methods , Young Adult
16.
Article in German | MEDLINE | ID: mdl-32161982

ABSTRACT

The German Society of Paediatric Oncology and Haematology (GPOH) and the German Cancer Society (DKG) have defined criteria for DKG certification of paediatric oncology departments. Since 2017, several paediatric oncology departments have already been certified according to these criteria. DKG certification aims for the harmonized and transparent presentation of the quality of care of paediatric oncology patients, as described by Mensah et al. The definition of certification criteria led to controversies within the GPOH about how far the criteria themselves would withstand scientific verifiability.We critically reviewed the paper by Mensah et al. asking whether valid conclusions for the German health system could be drawn from it. We found that currently defined criteria for DKG certification of paediatric oncology departments lack scientific evidence for German paediatric cancer centres in critical aspects.This article challenges case numbers as a parameter for the measurement of quality of care in German paediatric oncology. We try to contribute to an open discussion about alternative criteria for ensuring quality of care in German paediatric oncology departments.


Subject(s)
Cancer Care Facilities/standards , Medical Oncology/standards , Neoplasms/therapy , Pediatrics/standards , Certification , Child , Germany , Humans , Quality Assurance, Health Care , Societies, Medical
17.
Hum Mutat ; 40(5): 649-655, 2019 05.
Article in English | MEDLINE | ID: mdl-30740824

ABSTRACT

Constitutional mismatch repair deficiency (CMMRD) is caused by germline pathogenic variants in both alleles of a mismatch repair gene. Patients have an exceptionally high risk of numerous pediatric malignancies and benefit from surveillance and adjusted treatment. The diversity of its manifestation, and ambiguous genotyping results, particularly from PMS2, can complicate diagnosis and preclude timely patient management. Assessment of low-level microsatellite instability in nonneoplastic tissues can detect CMMRD, but current techniques are laborious or of limited sensitivity. Here, we present a simple, scalable CMMRD diagnostic assay. It uses sequencing and molecular barcodes to detect low-frequency microsatellite variants in peripheral blood leukocytes and classifies samples using variant frequencies. We tested 30 samples from 26 genetically-confirmed CMMRD patients, and samples from 94 controls and 40 Lynch syndrome patients. All samples were correctly classified, except one from a CMMRD patient recovering from aplasia. However, additional samples from this same patient tested positive for CMMRD. The assay also confirmed CMMRD in six suspected patients. The assay is suitable for both rapid CMMRD diagnosis within clinical decision windows and scalable screening of at-risk populations. Its deployment will improve patient care, and better define the prevalence and phenotype of this likely underreported cancer syndrome.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA Mismatch Repair , Genetic Association Studies , Genetic Predisposition to Disease , Leukocytes/metabolism , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Alleles , Genetic Association Studies/methods , Germ-Line Mutation , Humans , Microsatellite Repeats
18.
Blood ; 128(2): 227-38, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27099149

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is a human disorder characterized by defective Fas signaling, resulting in chronic benign lymphoproliferation and accumulation of TCRαß(+) CD4(-) CD8(-) double-negative T (DNT) cells. Although their phenotype resembles that of terminally differentiated or exhausted T cells, lack of KLRG1, high eomesodermin, and marginal T-bet expression point instead to a long-lived memory state with potent proliferative capacity. Here we show that despite their terminally differentiated phenotype, human ALPS DNT cells exhibit substantial mitotic activity in vivo. Notably, hyperproliferation of ALPS DNT cells is associated with increased basal and activation-induced phosphorylation of serine-threonine kinases Akt and mechanistic target of rapamycin (mTOR). The mTOR inhibitor rapamycin abrogated survival and proliferation of ALPS DNT cells, but not of CD4(+) or CD8(+) T cells in vitro. In vivo, mTOR inhibition reduced proliferation and abnormal differentiation by DNT cells. Importantly, increased mitotic activity and hyperactive mTOR signaling was also observed in recently defined CD4(+) or CD8(+) precursor DNT cells, and mTOR inhibition specifically reduced these cells in vivo, indicating abnormal programming of Fas-deficient T cells before the DNT stage. Thus, our results identify the mTOR pathway as a major regulator of lymphoproliferation and aberrant differentiation in ALPS.


Subject(s)
Autoimmune Lymphoproliferative Syndrome/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Signal Transduction/immunology , TOR Serine-Threonine Kinases/immunology , Adolescent , Adult , Autoimmune Lymphoproliferative Syndrome/pathology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Child , Child, Preschool , Female , Humans , Lectins, C-Type/immunology , Leukocyte Common Antigens/immunology , Male , Proto-Oncogene Proteins c-akt/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Immunologic , Trans-Activators/immunology
19.
Int J Cancer ; 141(4): 816-828, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28494505

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. It is characterized by highly complex karyotypes with structural and numerical chromosomal alterations. The observed OS-specific characteristics in localization and frequencies of chromosomal breakages strongly implicate a specific set of responsible driver genes or a specific mechanism of fragility induction. In this study, a comprehensive assessment of somatic copy number alterations (SCNAs) was performed in 160 OS samples using whole-genome CytoScan High Density arrays (Affymetrix, Santa Clara, CA). Genes or regions frequently targeted by SCNAs were identified. Breakage analysis revealed OS specific unstable regions in which well-known OS tumor suppressor genes, including TP53, RB1, WWOX, DLG2 and LSAMP are located. Certain genomic features, such as transposable elements and non-B DNA-forming motifs were found to be significantly enriched in the vicinity of chromosomal breakage sites. A complex breakage pattern-chromothripsis-has been suggested as a widespread phenomenon in OS. It was further demonstrated that hyperploidy and in particular chromothripsis were strongly correlated with OS patient clinical outcome. The revealed OS-specific fragility pattern provides novel clues for understanding the biology of OS.


Subject(s)
Bone Neoplasms/genetics , Chromosome Breakage , DNA Copy Number Variations , Osteosarcoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Chromothripsis , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Young Adult
20.
Am J Med Genet A ; 173(4): 1017-1037, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28168833

ABSTRACT

Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.


Subject(s)
Genetic Predisposition to Disease , Hematologic Neoplasms/diagnosis , Mutation , Neoplasm Proteins/genetics , Neoplasms/diagnosis , Adolescent , Child , Focus Groups/methods , Gene Expression , Genetic Counseling/ethics , Genetic Testing/methods , Genetics, Medical/history , Genetics, Medical/instrumentation , Genetics, Medical/methods , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , History, 21st Century , Humans , Neoplasms/genetics , Neoplasms/pathology , Societies, Medical/history , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL