Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Reprod Biomed Online ; 49(2): 103990, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38824763

ABSTRACT

RESEARCH QUESTION: What impact does the cryopreservation of endometrial tissue have on cell characteristics and molecular and epigenetic profile changes in endometrial tissue and stromal cells? DESIGN: Cellular properties, such as proliferation efficiency, surface marker expression and the differentiation potency of endometrial stromal cells (ESC) isolated from fresh (Native) and cryopreserved (Cryo) tissue were compared. Moreover, changes in the expression of genes associated with pluripotency, endometrial function and epigenetic regulation and microRNA (miRNA, miR) were assessed, as were levels of DNA methylation and histone modifications. RESULTS: Native and Cryo cells exhibit very similar profiles including cell surface marker expression, differentiation potency and histone modifications, except for a decrease in proliferative potency and cell surface marker SUSD2 expression in Cryo cells. It was demonstrated that endometrial tissue cryopreservation led to an up-regulated expression of genes associated with pluripotency (NANOG, OCT4 [also known as POU5F1]). This confirms that despite being recovered from cryopreserved differentiated tissue, cells retained their stemness properties. In addition, alterations in DNA methyltransferase (DNMT1, DNMT3A, DNMT3B) gene regulation were observed, along with a down-regulation of hsa-miR145-5p in Cryo ESC. CONCLUSIONS: These findings contribute to a deeper understanding of the complex effects of endometrial tissue cryopreservation, providing insights for both medical and basic research applications. Since different tissues possess unique characteristics, it is essential to select the most suitable cryopreservation method for each tissue individually. Furthermore, the study findings indicate the potential utility of slow-cooling cryopreservation for both normal and pathological endometrial tissue samples, with the purpose of isolating stromal cell cultures.

2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834995

ABSTRACT

Human amniotic fluid stem cells (hAFSCs) are known for their advantageous properties when compared to somatic stem cells from other sources. Recently hAFSCs have gained attention for their neurogenic potential and secretory profile. However, hAFSCs in three-dimensional (3D) cultures remain poorly investigated. Therefore, we aimed to evaluate cellular properties, neural differentiation, and gene and protein expression in 3D spheroid cultures of hAFSCs in comparison to traditional two-dimensional (2D) monolayer cultures. For this purpose, hAFSCs were obtained from amniotic fluid of healthy pregnancies and cultivated in vitro, either in 2D, or 3D under untreated or neuro-differentiated conditions. We observed upregulated expression of pluripotency genes OCT4, NANOG, and MSI1 as well as augmentation in gene expression of NF-κB-TNFα pathway genes (NFKB2, RELA and TNFR2), associated miRNAs (miR103a-5p, miR199a-3p and miR223-3p), and NF-κB p65 protein levels in untreated hAFSC 3D cultures. Additionally, MS analysis of the 3D hAFSCs secretome revealed protein upregulation of IGFs signaling the cascade and downregulation of extracellular matrix proteins, whereas neural differentiation of hAFSC spheroids increased the expression of SOX2, miR223-3p, and MSI1. Summarizing, our study provides novel insights into how 3D culture affects neurogenic potential and signaling pathways of hAFSCs, especially NF-κB, although further studies are needed to elucidate the benefits of 3D cultures more thoroughly.


Subject(s)
Cell Culture Techniques, Three Dimensional , NF-kappa B , Signal Transduction , Stem Cells , Female , Humans , Pregnancy , Amniotic Fluid/metabolism , Cell Differentiation , Nerve Tissue Proteins/metabolism , NF-kappa B/metabolism , RNA-Binding Proteins/metabolism , Stem Cells/metabolism , Spheroids, Cellular , Cell Culture Techniques, Three Dimensional/methods
3.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768772

ABSTRACT

The prevalence of infertility is getting higher over the years. The increasing age of first-time parents, although economically more desirable, can cause various biological problems from low natural conception rate to poor pregnancy outcomes. The growing demand for assisted reproductive technology procedures worldwide draws medical specialists' and scientists' attention to various elements which could lead to successful conception, such as follicular fluid (FF) and hormones. In this study, we analyzed the effects of exposure to follicle-stimulating hormone (FSH) on FF-derived stromal cells isolated from females admitted for treatment due to infertility, participating in assisted reproductive technologies procedures. We demonstrated that FF stromal cells are positive for mesenchymal stromal cell surface markers (CD90+, CD44+, CD166+) and showed that FSH has no impact on FF stromal cell morphology yet lowers proliferation rate. Using a real-time polymerase chain reaction method, we indicated that the expression of PTGS2 is significantly downregulated in FF sediment cells of patients who did not conceive; furthermore, we showed that FSH can affect the expression of ovarian follicle development and FSH response-related genes differentially depending on the length of exposure and that levels of ovulatory cascade genes differ in conceived and not-conceived patients' FF stromal cells. Using mass spectrometry analysis, we identified 97 proteins secreted by FF stromal cells. The identified proteins are related to stress response, positive regulation of apoptotic cell clearance and embryo implantation.


Subject(s)
Follicle Stimulating Hormone , Infertility , Pregnancy , Female , Humans , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Follicular Fluid/metabolism , Ovarian Follicle/metabolism , Follicle Stimulating Hormone, Human , Infertility/metabolism , Stromal Cells/metabolism
4.
Medicina (Kaunas) ; 58(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35454338

ABSTRACT

Background and objectives. Gestational diabetes mellitus is an increasingly diagnosed metabolic disorder during pregnancy with unknown pathological pathways. Taking into account the growing numbers of women who are conceiving after assisted reproductive technologies, they comprise an engaging target group for gestational diabetes mellitus etiopathogenesis research. In terms of metabolism and genetics, as the evidence shows, both unexplained infertility and gestational diabetes mellitus pose challenges for their interpretation due to the complex bodily processes. Materials and Methods. Our study examined the expression of genes (IGF2, GRB10, CRTC2, HMGA2, ESR1, DLK1, SLC6A15, GPT2, PLAGL1) associated with glucose metabolism in unexplained infertility patients who conceived after in vitro fertilization procedure, were diagnosed with GDM and their findings were compared with control population. Results. There were no significant differences in gene expression of endometrium stromal cells between healthy pregnant women and women with gestational diabetes, although the significant downregulation of CRTC2 was observed in the follicular fluid of women with gestational diabetes mellitus. Moreover, expression of HMGA2 and ESR1 was significantly reduced in FF cells when compared to endometrial cells. Conclusions. These findings may indicate about the importance of follicular fluid as an indicator for gestational diabetes and should be explored more by further research.


Subject(s)
Diabetes, Gestational , Endometrium , Follicular Fluid , Infertility , Diabetes, Gestational/epidemiology , Diabetes, Gestational/genetics , Female , Humans , Infertility/complications , Pregnancy , Prognosis
5.
Eur J Neurosci ; 53(11): 3791-3802, 2021 06.
Article in English | MEDLINE | ID: mdl-33861484

ABSTRACT

Resistance to pharmacological treatment poses a notable challenge for psychiatry. Such cases are usually treated with brain stimulation techniques, including repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive therapy (ECT). Empirical evidence links treatment resistance to insufficient brain plasticity and chronic inflammation. Therefore, this study encompasses analysis of neurotrophic and inflammatory factors in psychiatric patients undergoing rTMS and ECT in order to refine the selection of patients and predict clinical outcomes. This study enrolled 25 drug-resistant depressive patients undergoing rTMS and 31 drug-resistant schizophrenia patients undergoing ECT. Clinical efficacy of brain stimulation therapies was gauged using MADRS and HAM-D scales in the depression group and PANSS scale in the schizophrenia group. Blood-derived BDNF, VEGF, and TNFα were analysed during the treatment course. For reference, 19 healthy control subjects were also enrolled. After statistical analysis, no significant differences were detected in BDNF, VEGF, and TNFα concentrations among healthy, depressive, and schizophrenic subject groups before the treatment. However, depressive patient treatment with rTMS has increased BDNF concentration, while schizophrenic patient treatment with ECT has lowered the concentration of TNFα. Our findings suggest that a lower initial TNFα concentration could be a marker for treatment success in depressed patients undergoing rTMS, whereas in schizophrenic patient group treated with ECT, a higher concentration of VEGF correlates to milder symptoms post-treatment, especially in the negative scale.


Subject(s)
Brain-Derived Neurotrophic Factor , Electroconvulsive Therapy , Brain , Humans , Transcranial Magnetic Stimulation , Treatment Outcome , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A
6.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202508

ABSTRACT

When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues-the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins' expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders.


Subject(s)
Endometrium/cytology , Infertility, Female/therapy , Menstruation , Stem Cell Transplantation , Stem Cells/cytology , Stem Cells/metabolism , Biomarkers , Cell Differentiation , Cell Proliferation , Cell Separation/methods , Cells, Cultured , Decidua/cytology , Decidua/metabolism , Female , Humans , Immunophenotyping , Infertility, Female/etiology , Proteome , Proteomics/methods
7.
Molecules ; 26(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921161

ABSTRACT

Metabolic landscape and sensitivity to apoptosis induction play a crucial role in acute myeloid leukemia (AML) resistance. Therefore, we investigated the effect of metformin, a medication that also acts as an inhibitor of oxidative phosphorylation (OXPHOS), and MCL-1 inhibitor S63845 in AML cell lines NB4, KG1 and chemoresistant KG1A cells. The impact of compounds was evaluated using fluorescence-based metabolic flux analysis, assessment of mitochondrial Δψ and cellular ROS, trypan blue exclusion, Annexin V-PI and XTT tests for cell death and cytotoxicity estimations, also RT-qPCR and Western blot for gene and protein expression. Treatment with metformin resulted in significant downregulation of OXPHOS; however, increase in glycolysis was observed in NB4 and KG1A cells. In contrast, treatment with S63845 slightly increased the rate of OXPHOS in KG1 and KG1A cells, although it profoundly diminished the rate of glycolysis. Generally, combined treatment had stronger inhibitory effects on cellular metabolism and ATP levels. Furthermore, results revealed that treatment with metformin, S63845 and their combinations induced apoptosis in AML cells. In addition, level of apoptotic cell death correlated with cellular ROS induction, as well as with downregulation of tumor suppressor protein MYC. In summary, we show that modulation of redox-stress could have a potential anticancer activity in AML cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukemia, Myeloid/drug therapy , Metformin/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Oxidation-Reduction , Pyrimidines/therapeutic use , Reactive Oxygen Species/metabolism , Thiophenes/therapeutic use
8.
J Cell Biochem ; 121(7): 3491-3501, 2020 07.
Article in English | MEDLINE | ID: mdl-31898359

ABSTRACT

Human amniotic fluid mesenchymal stem cells (AF-MSCs) are a valuable, easily obtainable alternative source of SCs for regenerative medicine. Usually, amounts of cells required for the translational purposes are large thus the goal of this study was to assess the potency of AF-MSCs to proliferate and differentiate during long-term cultivation in vitro. AF-MSCs were isolated from amniotic fluid of healthy women in the second trimester of pregnancy and cultivated in vitro. AF-MSCs were cultivated up to 42 passages and they still maintained pluripotency genes, such as OCT4, SOX2, and NANOG, expression at a similar level as in the initial passages as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Fluorescence-activated cell sorting analysis demonstrated that the cell surface markers CD34 (negative), CD44, and CD105 (positive) expression was also stable, only the expression of SCs marker CD90 decreased during the cultivation. The morphology of AF-MSCs changed over passage, acridine orange/ethidium bromide staining revealed that more cells entered into apoptosis and the first signs of aging were detected only at late passages (later than p33) using SA-ß-gal assay. Concomitantly, the differentiation potential towards cardiomyogenic lineage, induced with DNA methyltransferases inhibitors decitabine, zebularine, and RG108, was impaired when comparing AF-MSCs at p31/33 with p6. The expression of cardiomyocytes genes MYH6, TNNT2, DES together with ion channels genes of the heart (sodium, calcium, and potassium) decreased in p31/33 induced AF-MSCs. AF-MSCs have a great proliferative capacity and maintain most of the characteristics up to 33 passages; however, the cardiomyogenic differentiation capacity decreases to a certain extent during the long-term cultivation. These results provide useful insights for the potential use of AF-MSCs for biobanking and broad applications requiring high yield of cells or repeated infusions. Hence, it is vital to take into account the passage number of AF-MSCs, cultivated in culture, when utilizing them in vivo or in clinical experiments.


Subject(s)
Amniotic Fluid/metabolism , Cell Culture Techniques , Stem Cells/cytology , Antigens, CD34/metabolism , Apoptosis , Cell Differentiation , Cell Lineage , Cell Proliferation , Cells, Cultured , Cellular Senescence , Endoglin/metabolism , Female , Flow Cytometry , Humans , Hyaluronan Receptors/metabolism , In Vitro Techniques , Myocytes, Cardiac , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Pregnancy , Pregnancy Trimester, Second , Regenerative Medicine , Reverse Transcriptase Polymerase Chain Reaction , SOXB1 Transcription Factors/metabolism , Thy-1 Antigens/metabolism
9.
J Cell Biochem ; 121(2): 1811-1822, 2020 02.
Article in English | MEDLINE | ID: mdl-31633234

ABSTRACT

Human mesenchymal stem cells isolated from amniotic fluid (AF-MSCs) demonstrate the potency for self-renewal and multidifferentiation, and can, therefore, be a potential alternative source of stem cells adapted for therapeutic purposes. The object of this study is to evaluate the efficacy of MSCs from AF when the pregnancy is normal or when the fetus is affected during pregnancy to differentiate into mesodermal lineage tissues and to elucidate epigenetic states responsible for terminal adipogenic and osteogenic differentiation. The morphology of AF-MSCs from two cell sources and the expression of the cell surface-specific (CD44, CD90, and CD105) markers and pluripotency (Oct4, Nanog, Sox2, and Rex1) genes were quite similar and underwent mesodermal lineage differentiation because this is shown by the typical cell morphology and of genes' expression specific for adipogenic (peroxisome proliferator-activated receptor-É£, adiponectin) and osteoblastic (alkaline phosphatase, osteopontin, and osteocalcin) differentiation. Terminal lineage-specific differentiation was related to differential expression of miR-17, miR-21, miR-34a, and miR-146a, decreased levels of acetylated H4 and H3K9, trimethylated H3K4 and H3K9, and the retention of H3K27me3 along with a reduction in the levels of HDAC1, DNMT1, and PRC1/2 proteins (BMI1/SUZ12). No significant distinction could be identified in the levels of expression of all epigenetic or pluripotency markers between undifferentiated MSCs isolated from AF of normal gestation and pregnancy where the fetus was damaged and between those differentiated toward adipocytes or osteoblasts. The expressional changes of those marks and microRNAs that occurred during terminal differentiation to mesodermal tissues indicate subtle epigenetic regulation in AF-MSCs when the condition of the fetus is healthy normal or diseased. More detailed studies of epigenetic mechanisms may offer a better understanding of AF-MSCs differentiation in fetus-diseased conditions and their usage in an autologous therapeutic application and prenatal disease research.


Subject(s)
Amniotic Fluid/cytology , Cell Differentiation , Cell Lineage , Fetal Diseases/pathology , Fetus/cytology , Mesenchymal Stem Cells/cytology , Mesoderm/cytology , Adipocytes/cytology , Adipocytes/metabolism , Amniotic Fluid/metabolism , Fetal Diseases/genetics , Fetal Diseases/metabolism , Fetus/metabolism , Gene Expression Regulation, Developmental , Gestational Age , Humans , Mesenchymal Stem Cells/metabolism , Mesoderm/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism
10.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228183

ABSTRACT

Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be potentially applied in cell therapy or regenerative medicine as a new alternative source of stem cells. They could be particularly valuable in restoring cardiac tissue after myocardial infarction or other cardiovascular diseases. We investigated the potential of biologically active compounds, namely, angiotensin II, retinoic acid (RA), epigallocatechin-3-gallate (EGCG), vitamin C alone, and the combinations of RA, EGCG, and vitamin C with angiotensin II to induce cardiomyogenic differentiation of AF-MSCs. We observed that the upregulated expression of cardiac gene markers (NKX2-5, MYH6, TNNT2, and DES) and cardiac ion channel genes (sodium, calcium, the potassium) also the increased levels of Connexin 43 and Nkx2.5 proteins. Extracellular flux analysis, applied for the first time on AF-MSCs induced with biologically active compounds, revealed the switch in AF-MSCS energetic phenotype and enhanced utilization of oxidative phosphorylation for energy production. Moreover, we demonstrated changes in epigenetic marks associated with transcriptionally active (H3K4me3, H3K9ac, and H4hyperAc) or repressed (H3K27me3) chromatin. All in all, we demonstrated that explored biomolecules were able to induce alterations in AF-MSCs at the phenotypic, genetic, protein, metabolic, and epigenetic levels, leading to the formation of cardiomyocyte progenitors that may become functional heart cells in vitro or in vivo.


Subject(s)
Angiotensin II/pharmacology , Ascorbic Acid/pharmacology , Catechin/analogs & derivatives , Epigenesis, Genetic/drug effects , Mesenchymal Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Tretinoin/pharmacology , Adult , Amniotic Fluid/cytology , Amniotic Fluid/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Catechin/pharmacology , Cell Differentiation/drug effects , Connexin 43/genetics , Connexin 43/metabolism , Female , Histones/genetics , Histones/metabolism , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Oxidative Phosphorylation , Potassium Channels/genetics , Potassium Channels/metabolism , Pregnancy , Pregnancy Trimester, Second , Primary Cell Culture , Signal Transduction , Troponin T/genetics , Troponin T/metabolism
11.
J Cell Biochem ; 120(5): 8129-8143, 2019 May.
Article in English | MEDLINE | ID: mdl-30485506

ABSTRACT

Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cell therapy and regenerative medicine. In this study, the potential of DNA methyltransferases (DNMT) inhibitors Decitabine, Zebularine, RG108 alone or combined with Zebularine and p53 inhibitor Pifithrin-α to induce cardiomyogenic differentiation of AF-MSCs was investigated. Differentiation into cardiomyocyte-like cells initiation was indicated with all agents by changes in the cell phenotype, upregulation of the relative expression of the main cardiac genes (NKX2-5, TNNT2, MYH6, and DES) as well as of cardiac ion channels genes (sodium, calcium, and potassium) as determined by reverse-transcription quantitative polymerase chain reaction and the increase in Connexin43 levels as detected from Western blot and immunofluorescence data. Cellular energetics and mitochondrial function in induced cells were assessed using Seahorse analyzer and revealed the initiation of AF-MSCs metabolic transformation into cardiomyocyte-like cells. All used inducers were nontoxic to AF-MSCs, arrested cell cycle at the G0/G1 phase, and upregulated p53 and p21 expression. The relative expression of miR-34a and miR-145 that are related to cell cycle regulation was also observed. Furthermore, the evaluated levels of chromatin remodeling proteins enhancer of zeste homolog 2, suppressor of zeste 12 protein homolog, DNMT1, histone deacetylase 1 (HDAC1), HDAC2, and heterochromatin protein 1α, as well as the rate of activating histone modifications, exhibited rearrangements of chromatin after the induction of cardiomyogenic differentiation. In conclusion, we demonstrated that all explored DNMT and p53 inhibitors initiated cardiomyogenesis-related alterations in AF-MSCs through rather similar mechanisms but to a different extent providing useful insights for the future research and potential applications of AF-MSCs.

12.
Mol Carcinog ; 58(11): 2008-2016, 2019 11.
Article in English | MEDLINE | ID: mdl-31385375

ABSTRACT

Treatment of acute myeloid leukemia (AML) is still a challenge because of common relapses or resistance to treatment. Therefore, the development of new therapeutic approaches is necessary. Various studies have shown that certain cancers, including some chemoresistant AML subsets, have upregulated oxidative phosphorylation. In this study, we aimed to assess treatment-resistant AML patients' cell modulation using oxidative phosphorylation inhibitors metformin and atovaquone alone and in various combinations with cytosine analog cytarabine and apoptosis inducer venetoclax. Metabolic activity analysis using Agilent Seahorse XF Extracellular Flux Analyzer revealed that peripheral blood mononuclear cells' metabolic state was different among treatment-resistant AML patients. We demonstrated that metformin decreased therapy-resistant-AML cell oxidative phosphorylation ex vivo, cotreatment with cytarabine and venetoclax slightly increased the effect. However, treatment with atovaquone did not have a marked effect in our experiment. Cell treatment had a slight effect on cell proliferation inhibition; combination of metformin, cytarabine, and venetoclax had the strongest effect. Moreover, a slightly higher effect on cell proliferation and cell cycle regulation was demonstrated in the cells with higher initial oxidative phosphorylation rate as demonstrated by gene expression analysis using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Proteomic analysis by liquid chromatography-mass spectrometry demonstrated that chemoresistant AML cell treatment with metformin modulated metabolic pathways, while metformin combination with cytarabine and venetoclax boosted the effect. We suggest that oxidative phosphorylation inhibition is effective but not sufficient for chemoresistant AML treatment. Indeed, it causes anticancerous changes that might have an important additive role in combinatory treatment.


Subject(s)
Drug Resistance, Neoplasm/genetics , Leukemia, Myeloid, Acute/drug therapy , Metformin/pharmacology , Proteomics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Neoplasm Proteins/genetics , Oxidative Phosphorylation/drug effects
13.
Cell Biol Int ; 43(3): 299-312, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30635962

ABSTRACT

Amniotic fluid-derived mesenchymal stem cells (AF-MSCs) are autologous to the fetus and represent a potential alternative source for the regenerative medicine and treatment of perinatal disorders. To date, AF-MSCs differentiation capacity to non-mesodermal lineages and epigenetic regulation are still poorly characterized. The present study investigated the differentiation potential of AF-MSCs toward neural-like cells in comparison to the mesodermal myogenic lineage and assessed epigenetic factors involved in tissue-specific differentiation. Myogenic and neural differentiation assays were performed by the incubation with specific induction media. Typical MSCs markers were determined by flow cytometry, the expression of lineage-specific genes, microRNAs and chromatin modifying proteins were examined by RT-qPCR and Western blot, respectively. AF-MSCs of normal and fetus-affected gestations had similar stem cells characteristics and two-lineage potential, as characterized by cell morphology and the expression of myogenic and neural markers. Two-lineage differentiation process was associated with the down-regulation of miR-17 and miR-21, the up-regulation of miR-34a, miR-146a and DNMT3a/DNMT3b along with the gradual decrease in the levels of DNMT1, HDAC1, active marks of chromatin (H4hyperAc, H3K9ac, H3K4me3) and the repressive H3K9me3 mark. Differentiation was accompanied by the down-regulation of PRC1/2 proteins (BMI1/SUZ12, EZH2) and the retention of the repressive H3K27me3 mark. We report that both AF-MSCs of normal and fetus-affected gestations possess differentiation capacity toward myogenic and neural lineages through rather similar epigenetic mechanisms that may provide potential applications for further investigation of the molecular basis of prenatal diseases and for the future autologous therapy.


Subject(s)
Amniotic Fluid/cytology , Cell Differentiation/genetics , Epigenesis, Genetic , Fetus/cytology , Mesenchymal Stem Cells/metabolism , Muscle Development/genetics , Neurons/cytology , Cell Lineage , Chromatin/metabolism , Female , Gene Expression Regulation, Developmental , Histones/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pregnancy , Protein Processing, Post-Translational
14.
J Cell Biochem ; 118(11): 3744-3755, 2017 11.
Article in English | MEDLINE | ID: mdl-28379622

ABSTRACT

Human amniotic fluid (AF)-derived mesenchymal stem cells (MSCs) sharing embryonic and adult stem cells characteristics are interesting by their multipotency and the usage for regenerative medicine. However, the usefulness of these cells for revealing the fetal diseases still needs to be assessed. Here, we have analyzed the epigenetic environment in terms of histone modifications in cultures of MSCs derived from AF of normal pregnancies and those with fetal abnormalities. The comparison of MSCs samples from AF of normal pregnancies (N) and fetus-affected (P) revealed two distinct cultures by their proliferation potential (P I and P II). Cell populations from N and P I samples had similar growth characteristics and exhibited quite similar cell surface (CD44, CD90, CD105) and stemness markers (Oct4, Nanog, Sox2, Rex1) profile that was distinct in slower growing and faster senescent P II cultures. Those differences were associated with changes in 5-Cyt DNA methylation and alterations in the expression levels of chromatin modifiers (DNMT1, HDAC1/2), activating (H4ac, H3K4me3), and repressive (H3K9me2/me3, H3K27me3) histone marks. MSCs isolated from AF with the genetic or multifactorial fetal diseases (P II samples) were enriched with repressive histone marks and H4K16ac, H3K9ac, H3K14ac modifications. This study indicates that differential epigenetic environment reflects a state of AF-MSCs dependently on their growth, phenotype, and stemness characteristics suggesting a way for better understanding of epigenetic regulatory mechanisms in AF-MSCs cultures in normal and diseased gestation conditions. J. Cell. Biochem. 118: 3744-3755, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Amniotic Fluid/metabolism , Fetus/metabolism , Histones/metabolism , Mesenchymal Stem Cells/metabolism , Pregnancy Trimester, Second/metabolism , Protein Processing, Post-Translational/physiology , Amniotic Fluid/cytology , Cells, Cultured , Female , Fetus/cytology , Humans , Mesenchymal Stem Cells/cytology , Pregnancy
15.
Biosci Biotechnol Biochem ; 80(11): 2100-2108, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27380113

ABSTRACT

Fatty acids were identified in monofloral beebread (BB) and bee pollen (BP) loads collected from Trifolium pratense L. A gas chromatography method was used to identify and quantify fatty acids: Thirty-five fatty acids were identified in BB and 42 in BP. A high amount of the healthy n-3 fatty acids was found. The ratio of polyunsaturated fatty acids n-3 to n-6 reached a value of 8.42 and 3.35 in the latter products. The proteomic analysis also was performed on the manually collected T. pratense pollen, and the most abundant protein groups were subjected to mass spectrometry analysis. Proteins identified in T. pratense pollen are involved in the main cellular functions (cell membrane formation, organelles traffic, and mainly metabolic processes). Because of the composition of fatty acids in BB and BP and a variety of proteins present in pollen, these products are considered to be favorable for human nutrition and health.

16.
J Cell Mol Med ; 19(7): 1742-55, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25864732

ABSTRACT

Epigenetic changes play a significant role in leukaemia pathogenesis, therefore histone deacetylases (HDACis) are widely accepted as an attractive strategy for acute promyelocytic leukaemia (APL) treatment. Belinostat (Bel, PXD101), a hydroxamate-type HDACi, has proved to be a promising cure in clinical trials for solid tumours and haematological malignancies. However, insight into molecular effects of Bel on APL, is still lacking. In this study, we investigated the effect of Bel alone and in combination with differentiation inducer retinoic acid (RA) on human promyelocytic leukaemia NB4 and HL-60 cells. We found that treatment with Bel, depending on the dosage used, inhibits cell proliferation, whereas in combination with RA enhances and accelerates granulocytic leukaemia cell differentiation. We also evaluated the effect of used treatments with Bel and RA on certain epigenetic modifiers (HDAC1, HDAC2, PCAF) as well as cell cycle regulators (p27) gene expression and protein level modulation. We showed that Bel in combination with RA up-regulates basal histone H4 hyperacetylation level more strongly compared to Bel or RA alone. Furthermore, chromatin immunoprecipitation assay indicated that Bel induces the accumulation of hyperacetylated histone H4 at the p27 promoter region. Mass spectrometry analysis revealed that in control NB4 cells, hyperacetylated histone H4 is mainly found in association with proteins involved in DNA replication and transcription, whereas after Bel treatment it is found with proteins implicated in pro-apoptotic processes, in defence against oxidative stress and tumour suppression. Summarizing, our study provides some novel insights into the molecular mechanisms of HDACi Bel action on APL cells.


Subject(s)
Chromatin Assembly and Disassembly/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Leukemia, Promyelocytic, Acute/pathology , Sulfonamides/pharmacology , Acetylation/drug effects , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , DNA Methylation/drug effects , Gene Expression Regulation, Leukemic/drug effects , Granulocytes/drug effects , Granulocytes/pathology , HL-60 Cells , Histones/metabolism , Humans , Leukemia, Promyelocytic, Acute/genetics , Molecular Sequence Data , Neoplasm Proteins/metabolism , Promoter Regions, Genetic/genetics , Tretinoin/pharmacology
17.
Int J Mol Sci ; 16(8): 18252-69, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26287160

ABSTRACT

Today, cancer is understood as an epigenetic as well as genetic disease. The main epigenetic hallmarks of the cancer cell are DNA methylation and histone modifications. Proteins such as histone deacetylases (HDACs) that cause modifications of histones and other proteins can be targets for novel anticancer agents. Recently, interest in compounds that can inhibit HDACs increased, and now there are many HDACs inhibitors (HDACIs) available with different chemical structures, biological and biochemical properties; hopefully some of them will succeed, probably in combination with other agents, in cancer therapies. In our study we focused on the novel HDACI-BML-210. We found that BML-210 (N-phenyl-N'-(2-Aminophenyl)hexamethylenediamide) inhibits the growth of NB4 cells in dose- and time-dependent manner. In this study we also examined how expression and activity of HDACs are affected after leukemia cell treatment with BML-210. Using a mass spectrometry method we identified proteins that changed expression after treatment with BML-210. We prepared RT-PCR analysis of these genes and the results correlated with proteomic data. Based on these and other findings from our group, we suggest that HDACIs, like BML-210, can be promising anticancer agents in promyelocytic leukemia treatment.


Subject(s)
Anilides/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Leukemic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Leukemia, Promyelocytic, Acute/genetics , Apoptosis/drug effects , Biomarkers , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Leukemia, Promyelocytic, Acute/metabolism , Proteome , Proteomics/methods
18.
BMC Cell Biol ; 15: 4, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24443786

ABSTRACT

BACKGROUND: Epigenetic regulation is known to affect gene expression, and recent research shows that aberrant DNA methylation patterning and histone modifications may play a role in leukemogenesis. In order to highlight the co-operation of epigenetic mechanisms acting during the latter process it is important to clarify their potential as biomarkers of granulocytic differentiation. RESULTS: In this study we investigated epigenetic alterations in human hematopoietic cells at a distinct differentiation stages: primary hematopoietic CD34+ cells, KG1 myeloid leukemic cells, whose development is stopped at early stage of differentiation, and mature neutrophils. We focused on the epigenetic status of cell cycle regulating (p15, p16) and differentiation related (E-cadherin and RARß) genes. We found that the methylation level in promoter regions of some of these genes was considerably higher in KG1 cells and lower in CD34+ cells and human neutrophils. As examined and evaluated by computer-assisted methods, histone H3 and H4 modifications, i.e. H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc, were similar in CD34+ cells and human mature neutrophils. By contrast, in the KG1 cells, histone H3 and H4 modifications were quite high and increased after induction of granulocytic differentiation with the HDAC inhibitor phenyl butyrate. CONCLUSIONS: We found the methylation status of the examined gene promoters and histone modifications to be characteristically associated with the hematopoietic cell progenitor state, induced to differentiate myeloid KG1 cells and normal blood neutrophils. This could be achieved through epigenetic regulation of E-cadherin, p15, p16 and RARß genes expression caused by DNA methylation/demethylation, core and linker histones distribution in stem hematopoietic cells, induced to differentiation KG1 cells and mature human neutrophils, as well as the histone modifications H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc in relation to hematopoietic cell differentiation to granulocyte. These findings also suggest them as potentially important biomarkers of hematopoietic cell granulocytic differentiation and could be valuable for leukemia induced differentiation therapy.


Subject(s)
Antigens, CD34/metabolism , Epigenesis, Genetic , Granulocytes/cytology , Hematopoietic Stem Cells/metabolism , Myeloid Cells/metabolism , Neutrophils/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/drug effects , Cells, Cultured , DNA Methylation , Granulocytes/metabolism , Hematopoietic Stem Cells/cytology , Histone Deacetylase Inhibitors/pharmacology , Histones/genetics , Histones/metabolism , Humans , Myeloid Cells/cytology , Neutrophils/cytology , Phenylbutyrates/pharmacology , Promoter Regions, Genetic , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism
19.
Anticancer Drugs ; 25(8): 938-49, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24800886

ABSTRACT

Therapeutic strategies targeting histone deacetylase (HDAC) inhibition have become promising in many human malignancies. Belinostat (PXD101) is a hydroxamate-type HDAC inhibitor tested in phase I and II clinical trials in solid tumors and hematological cancers. However, little is known about the use of belinostat for differentiation therapy against acute myelogenous leukemia. Here, we characterize the antileukemia activity of belinostat as a single drug and in combination with all-trans-retinoic acid (RA) in promyelocytic leukemia HL-60 and NB4 cells. Belinostat exerted dose-dependent growth-inhibitory or proapoptotic effects, promoting cell cycle arrest at the G0/G1 or the S transition. Apoptosis was accompanied by activation of caspase 3, degradation of PARP-1, and cell cycle-dependent changes in the expression of survivin, cyclin E1, and cyclin A2. Belinostat induced a dose-dependent reduction in the expression of EZH2 and SUZ12, HDAC-1, HDAC-2, and histone acetyltransferase PCAF (p300/CBP-associated factor). Belinostat increased acetylation of histone H4, H3 at K9 and H3 at K16 residues in a dose-dependent manner, but did not reduce trimethylation of H3 at K27 at proapoptotic doses. Combined treatment with belinostat and RA dose dependently accelerated and reinforced granulocytic differentiation, accompanied by changes in the expression of CD11b, C/EBPα (CCAAT/enhancer binding protein-α), and C/EBPε. Our results concluded the usefulness of belinostat, as an epigenetic drug, for antileukemia and differentiation therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Leukemia, Promyelocytic, Acute/pathology , Sulfonamides/pharmacology , Acetylation , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Enhancer of Zeste Homolog 2 Protein , Granulocytes/drug effects , Granulocytes/pathology , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Leukemia, Promyelocytic, Acute/genetics , Neoplasm Proteins , Polycomb Repressive Complex 2/metabolism , Transcription Factors , Tretinoin/pharmacology
20.
Genes (Basel) ; 15(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38790277

ABSTRACT

Acute myeloid leukemia is the second most frequent type of leukemia in adults. Due to a high risk of development of chemoresistance to first-line chemotherapy, the survival rate of patients in a 5-year period is below 30%. One of the reasons is that the AML population is heterogeneous, with cell populations partly composed of very primitive CD34+CD38- hematopoietic stem/progenitor cells, which are often resistant to chemotherapy. First-line treatment with cytarabine and idarubicin fails to inhibit the proliferation of CD34+CD38- cells. In this study, we investigated Metformin's effect with or without first-line conventional chemotherapy, or with other drugs like venetoclax and S63845, on primitive and undifferentiated CD34+ AML cells in order to explore the potential of Metformin or S63845 to serve as adjuvant therapy for AML. We found that first-line conventional chemotherapy treatment inhibited the growth of cells and arrested the cells in the S phase of the cell cycle; however, metformin affected the accumulation of cells in the G2/M phase. We observed that CD34+ KG1a cells respond better to lower doses of cytarabine or idarubicin in combination with metformin. Also, we determined that treatment with cytarabine, venetoclax, and S63845 downregulated the strong tendency of CD34+ KG1a cells to form cell aggregates in culture due to the downregulation of leukemic stem cell markers like CD34 and CD44, as well as adhesion markers. Also, we found that idarubicin slightly upregulated myeloid differentiation markers, CD11b and CD14. Treatment with cytarabine, idarubicin, venetoclax, metformin, and S63845 upregulated some cell surface markers like HLA-DR expression, and metformin upregulated CD9, CD31, and CD105 cell surface marker expression. In conclusion, we believe that metformin has the potential to be used as an adjuvant in the treatment of resistant-to-first-line-chemotherapy AML cells. Also, we believe that the results of our study will stimulate further research and the potential use of changes in the expression of cell surface markers in the development of new therapeutic strategies.


Subject(s)
Antigens, CD34 , Cytarabine , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Metformin , Humans , Metformin/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Drug Resistance, Neoplasm/drug effects , Antigens, CD34/metabolism , Cell Line, Tumor , Cytarabine/pharmacology , Cell Proliferation/drug effects , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Idarubicin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL