Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
PLoS Genet ; 16(1): e1008531, 2020 01.
Article in English | MEDLINE | ID: mdl-31895944

ABSTRACT

Acquired resistance to endocrine therapy is responsible for half of the therapeutic failures in the treatment of breast cancer. Recent findings have implicated increased expression of the ETS transcription factor ELF5 as a potential modulator of estrogen action and driver of endocrine resistance, and here we provide the first insight into the mechanisms by which ELF5 modulates estrogen sensitivity. Using chromatin immunoprecipitation sequencing we found that ELF5 binding overlapped with FOXA1 and ER at super enhancers, enhancers and promoters, and when elevated, caused FOXA1 and ER to bind to new regions of the genome, in a pattern that replicated the alterations to the ER/FOXA1 cistrome caused by the acquisition of resistance to endocrine therapy. RNA sequencing demonstrated that these changes altered estrogen-driven patterns of gene expression, the expression of ER transcription-complex members, and 6 genes known to be involved in driving the acquisition of endocrine resistance. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, and proximity ligation assays, we found that ELF5 interacted physically with members of the ER transcription complex, such as DNA-PKcs. We found 2 cases of endocrine-resistant brain metastases where ELF5 levels were greatly increased and ELF5 patterns of gene expression were enriched, compared to the matched primary tumour. Thus ELF5 alters ER-driven gene expression by modulating the ER/FOXA1 cistrome, by interacting with it, and by modulating the expression of members of the ER transcriptional complex, providing multiple mechanisms by which ELF5 can drive endocrine resistance.


Subject(s)
Breast Neoplasms/genetics , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/metabolism , Transcription Factors/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , MCF-7 Cells , Mice , Protein Binding
2.
Breast Cancer Res ; 22(1): 63, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32527287

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Animals , Apoptosis/physiology , Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Chromatin/genetics , Chromatin/metabolism , DNA Damage , Female , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Prognosis , Proteogenomics , Tumor Cells, Cultured
3.
PLoS Genet ; 13(11): e1007072, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29117179

ABSTRACT

We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase in RNase L activity, and its effects were dependent on expression of RNase L and IRF7, proximal and distal pathway members. This is the first report of a viral recognition pathway regulating lactation.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Lactation/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Adenine Nucleotides/metabolism , Animals , Cell Culture Techniques , Endoribonucleases/metabolism , Female , Humans , Mammary Glands, Animal/metabolism , Mice , Milk , Mutation/genetics , Oligoribonucleotides/metabolism , RNA, Double-Stranded/metabolism , Signal Transduction/genetics
4.
PLoS Biol ; 13(12): e1002330, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26717410

ABSTRACT

During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Lung Neoplasms/secondary , Lung/metabolism , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Animals , Breast Neoplasms/immunology , Breast Neoplasms/physiopathology , Breast Neoplasms/virology , Capillary Permeability , Cell Proliferation , DNA-Binding Proteins , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hemorrhage/etiology , Hemorrhage/prevention & control , Humans , Leukocytes/immunology , Leukocytes/pathology , Lung/blood supply , Lung/immunology , Lung/pathology , Lung Neoplasms/blood supply , Lung Neoplasms/pathology , Lung Neoplasms/prevention & control , Lymphocyte Depletion , Mice, Transgenic , Myeloid Cells/immunology , Myeloid Cells/pathology , Neoplasm Proteins/genetics , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/prevention & control , Neutrophil Infiltration , Polyomavirus/pathogenicity , Proto-Oncogene Proteins c-ets/genetics , Recombinant Fusion Proteins/metabolism , Survival Analysis , Transcription Factors , Tumor Burden
5.
PLoS Biol ; 10(12): e1001461, 2012.
Article in English | MEDLINE | ID: mdl-23300383

ABSTRACT

We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Estrogens/pharmacology , Proto-Oncogene Proteins c-ets/metabolism , Animals , Binding Sites , Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin Immunoprecipitation , DNA, Neoplasm/metabolism , DNA-Binding Proteins , Female , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human/genetics , Humans , Mice , Models, Biological , Phenotype , Protein Binding/drug effects , Protein Binding/genetics , Proto-Oncogene Proteins c-ets/genetics , Sequence Analysis, DNA , Transcription Factors , Transcription, Genetic/drug effects
6.
BMC Cancer ; 14: 509, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25012362

ABSTRACT

BACKGROUND: Tetraspanins are transmembrane proteins that serve as scaffolds for multiprotein complexes containing, for example, integrins, growth factor receptors and matrix metalloproteases, and modify their functions in cell adhesion, migration and transmembrane signaling. CD151 is part of the tetraspanin family and it forms tight complexes with ß1 and ß4 integrins, both of which have been shown to be required for tumorigenesis and/or metastasis in transgenic mouse models of breast cancer. High levels of the tetraspanin CD151 have been linked to poor patient outcome in several human cancers including breast cancer. In addition, CD151 has been implicated as a promoter of tumor angiogenesis and metastasis in various model systems. METHODS: Here we investigated the effect of Cd151 deletion on mammary tumorigenesis by crossing Cd151-deficient mice with a spontaneously metastasising transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV). RESULTS: Cd151 deletion did not affect the normal development and differentiation of the mammary gland. While there was a trend towards delayed tumor onset in Cd151-/- PyMT mice compared to Cd151+/+ PyMT littermate controls, this result was only approaching significance (Log-rank test P-value =0.0536). Interestingly, Cd151 deletion resulted in significantly reduced numbers and size of primary tumors but did not appear to affect the number or size of metastases in the MMTV/PyMT mice. Intriguingly, no differences in the expression of markers of cell proliferation, apoptosis and blood vessel density was observed in the primary tumors. CONCLUSION: The findings from this study provide additional evidence that CD151 acts to enhance tumor formation initiated by a range of oncogenes and strongly support its relevance as a potential therapeutic target to delay breast cancer progression.


Subject(s)
Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Tetraspanin 24/genetics , Animals , Antigens, Polyomavirus Transforming/genetics , Cell Differentiation , Cell Proliferation , Female , Humans , Lung Neoplasms/genetics , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/pathogenicity , Mice , Mice, Inbred C57BL , Tetraspanin 24/metabolism
7.
Front Oncol ; 12: 876451, 2022.
Article in English | MEDLINE | ID: mdl-35646658

ABSTRACT

Breast cancer is a complex, dynamic disease that acquires heterogeneity through various mechanisms, allowing cancer cells to proliferate, survive and metastasise. Heterogeneity is introduced early, through the accumulation of germline and somatic mutations which initiate cancer formation. Following initiation, heterogeneity is driven by the complex interaction between intrinsic cellular factors and the extrinsic tumour microenvironment (TME). The TME consists of tumour cells and the subsequently recruited immune cells, endothelial cells, fibroblasts, adipocytes and non-cellular components of the extracellular matrix. Current research demonstrates that stromal-immune cell interactions mediated by various TME components release environmental cues, in mechanical and chemical forms, to communicate with surrounding and distant cells. These interactions are critical in facilitating the metastatic process at both the primary and secondary site, as well as introducing greater intratumoral heterogeneity and disease complexity by exerting selective pressures on cancer cells. This can result in the adaptation of cells and a feedback loop to the cancer genome, which can promote therapeutic resistance. Thus, targeting TME and immune-stromal cell interactions has been suggested as a potential therapeutic avenue given that aspects of this process are somewhat conserved between breast cancer subtypes. This mini review will discuss emerging ideas on how the interaction of various aspects of the TME contribute to increased heterogeneity and disease progression, and the therapeutic potential of targeting the TME.

8.
Front Physiol ; 13: 840826, 2022.
Article in English | MEDLINE | ID: mdl-35330933

ABSTRACT

Breast and prostate cancers are among the most commonly diagnosed cancers worldwide, and together represented almost 20% of all new cancer diagnoses in 2020. For both cancers, the primary treatment options are surgical resection and sex hormone deprivation therapy, highlighting the initial dependence of these malignancies on the activity of both endogenous and exogenous hormones. Cancer cell phenotype and patient prognosis is not only determined by the collection of specific gene mutations, but through the interaction and influence of a wide range of different local and systemic components. While genetic risk factors that contribute to the development of these cancers are well understood, increasing epidemiological evidence link modifiable lifestyle factors such as physical exercise, diet and weight management, to drivers of disease progression such as inflammation, transcriptional activity, and altered biochemical signaling pathways. As a result of this significant impact, it is estimated that up to 50% of cancer cases in developed countries could be prevented with changes to lifestyle and environmental factors. While epidemiological studies of modifiable risk factors and research of the biological mechanisms exist mostly independently, this review will discuss how advances in our understanding of the metabolic, protein and transcriptional pathways altered by modifiable lifestyle factors impact cancer cell physiology to influence breast and prostate cancer risk and prognosis.

9.
Front Oncol ; 12: 854151, 2022.
Article in English | MEDLINE | ID: mdl-35547880

ABSTRACT

Prostate cancer is the second most diagnosed cancer among men worldwide. Androgen deprivation therapy, the most common targeted therapeutic option, is circumvented as prostate cancer progresses from androgen dependent to castrate-resistant disease. Whilst the nuclear receptor transcription factor, androgen receptor, drives the growth of prostate tumor during initial stage of the disease, androgen resistance is associated with poorly differentiated prostate cancer. In the recent years, increased research has highlighted the aberrant transcriptional activities of a small number of transcription factors. Along with androgen receptors, dysregulation of these transcription factors contributes to both the poorly differentiated phenotypes of prostate cancer cells and the initiation and progression of prostate carcinoma. As master regulators of cell fate decisions, these transcription factors may provide opportunity for the development of novel therapeutic targets for the management of prostate cancer. Whilst some transcriptional regulators have previously been notoriously difficult to directly target, technological advances offer potential for the indirect therapeutic targeting of these transcription factors and the capacity to reprogram cancer cell phenotype. This mini review will discuss how recent advances in our understanding of transcriptional regulators and material science pave the way to utilize these regulatory molecules as therapeutic targets in prostate cancer.

10.
J Cell Biol ; 171(4): 717-28, 2005 Nov 21.
Article in English | MEDLINE | ID: mdl-16301336

ABSTRACT

Integrin-mediated adhesion regulates the development and function of a range of tissues; however, little is known about its role in glandular epithelium. To assess the contribution of beta1 integrin, we conditionally deleted its gene in luminal epithelia during different stages of mouse mammary gland development and in cultured primary mammary epithelia. Loss of beta1 integrin in vivo resulted in impaired alveologenesis and lactation. Cultured beta1 integrin-null cells displayed abnormal focal adhesion function and signal transduction and could not form or maintain polarized acini. In vivo, epithelial cells became detached from the extracellular matrix but remained associated with each other and did not undergo overt apoptosis. beta1 integrin-null mammary epithelial cells did not differentiate in response to prolactin stimulation because of defective Stat5 activation. In mice where beta1 integrin was deleted after the initiation of differentiation, fewer defects in alveolar morphology occurred, yet major deficiencies were also observed in milk protein and milk fat production and Stat5 activation, indicating a permissive role for beta1 integrins in prolactin signaling. This study demonstrates that beta1 integrin is critical for the alveolar morphogenesis of a glandular epithelium and for maintenance of its differentiated function. Moreover, it provides genetic evidence for the cooperation between integrin and cytokine signaling pathways.


Subject(s)
Epithelial Cells/cytology , Epithelium/metabolism , Integrin beta1/genetics , Integrin beta1/physiology , Mammary Glands, Animal/metabolism , Animals , Blotting, Western , Cell Adhesion , Cell Differentiation , Cells, Cultured , Crosses, Genetic , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Deletion , Gene Expression Regulation , Integrins/metabolism , Lactation , Mice , Mice, Transgenic , Microscopy, Fluorescence , Models, Genetic , Prolactin/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Time Factors
11.
Front Cell Dev Biol ; 8: 552, 2020.
Article in English | MEDLINE | ID: mdl-32766238

ABSTRACT

Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo. Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro, as well as primary tumor growth and metastatic colonization of the lung in vivo. Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 (Robo1) leading to activation of a Myc transcriptional programme.

12.
J Mammary Gland Biol Neoplasia ; 13(1): 13-28, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18219564

ABSTRACT

Mammary morphogenesis is orchestrated with other reproductive events by pituitary-driven changes to the systemic hormone environment, initiating the formation of a mammary ductal network during puberty and the addition of secretory alveoli during pregnancy. Prolactin is the major driver of development during pregnancy via regulation of ovarian progesterone production (in many species) and direct effects on mammary epithelial cells (in all species). Together these hormones regulate two aspects of development that are the subject of intense interest: (1) a genomic regulatory network that integrates many additional spatial and temporal cues to control gene expression and (2), the activity of a stem and progenitor cell hierarchy. Amalgamation of these two aspects will increase our understanding of cell proliferation and differentiation within the mammary gland, with clear application to our attempts to control breast cancer. Here we focus on providing an over-view of prolactin action during development of the model murine mammary gland.


Subject(s)
Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , Prolactin/metabolism , Animals , Endocrine System , Humans , Receptors, Prolactin/metabolism , Signal Transduction
13.
Breast Cancer Res ; 9(2): 302, 2007.
Article in English | MEDLINE | ID: mdl-17381824

ABSTRACT

Genomic regulatory networks specify how cellular gene expression responds to external temporal and spatial stimuli, ensuring that correct cell fate decisions are made and the appropriate cell phenotypes are adopted. In mammary epithelial cells, the hierarchy of stem and progenitor cells and the genetically specified program of transcriptional activity are beginning to be elucidated and integrated. A novel role for Gata-3 in specifying and maintaining mammary cell fate has recently been identified. These reports offer an understanding of how mammary cells assume and maintain a variety of cell behaviours and functions, and how a mammary cell may potentially subvert these constraints during carcinogenesis.


Subject(s)
Breast Neoplasms/metabolism , Breast/cytology , Breast/pathology , GATA3 Transcription Factor/genetics , Gene Expression Regulation , Genomics/methods , Mammary Glands, Animal/cytology , Mammary Glands, Animal/pathology , Animals , Cell Lineage , Cell Transformation, Neoplastic , Humans , Mice , Stem Cells/cytology , Time Factors
14.
Mol Endocrinol ; 20(5): 1177-87, 2006 May.
Article in English | MEDLINE | ID: mdl-16469767

ABSTRACT

The proliferative phase of mammary alveolar morphogenesis is initiated during early pregnancy by rising levels of serum prolactin and progesterone, establishing a program of gene expression that is ultimately responsible for the development of the lobuloalveoli and the onset of lactation. To explore this largely unknown genetic program, we constructed transcript profiles derived from transplanted mammary glands formed by recombination of prolactin receptor (Prlr) knockout or wild-type mammary epithelium with wild-type mammary stroma. Comparison with profiles derived from prolactin-treated Scp2 mammary epithelial cells produced a small set of commonly prolactin-regulated genes that included the negative regulator of cytokine signaling, Socs2 (suppressor of cytokine signaling 2), and the ets transcription factor, E74-like factor 5 (Elf5). Homozygous null mutation of Socs2 rescued the failure of lactation and reduction of mammary signal transducer and activator of transcription 5 phosphorylation that characterizes Prlr heterozygous mice, demonstrating that mammary Socs2 is a key regulator of the prolactin-signaling pathway. Reexpression of Elf5 in Prlr nullizygous mammary epithelium restored lobuloalveolar development and milk production, demonstrating that Elf5 is a transcription factor capable of substituting for prolactin signaling. Thus, Socs2 and Elf5 are key members of the set of prolactin-regulated genes that mediate prolactin-driven mammary development.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Mammary Glands, Animal/growth & development , Prolactin/physiology , Suppressor of Cytokine Signaling Proteins/genetics , Transcription Factors/genetics , Animals , DNA-Binding Proteins/analysis , DNA-Binding Proteins/metabolism , Female , Gene Expression Profiling , Lactation/genetics , Mammary Glands, Animal/chemistry , Mammary Glands, Animal/drug effects , Mice , Mice, Knockout , Pregnancy , Prolactin/pharmacology , RNA, Messenger/analysis , RNA, Messenger/metabolism , Receptors, Prolactin/genetics , Suppressor of Cytokine Signaling Proteins/analysis , Suppressor of Cytokine Signaling Proteins/metabolism , Transcription Factors/analysis , Transcription Factors/metabolism , Transcription, Genetic
15.
Mol Endocrinol ; 19(7): 1868-83, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15705664

ABSTRACT

The secretory activation stage of mammary gland development occurs after parturition and converts inactive lobuloalveoli to active milk secretion. This process is triggered by progestin withdrawal and depends upon augmented prolactin (Prl) signaling. Little is known about the Prl-induced transcriptional changes that occur in the mammary gland to drive this process. To examine changes in the mammary transcriptome responsible for secretory activation, we have used transcript profiling of three mouse models that exhibit failure of secretory activation: knockout of galanin (a regulator of pituitary Prl production and a mammary cell autonomous modulator of Prl action); treatment with S179D Prl (a phosphoprolactin mimic); and knockout of a single Prl receptor allele. A significant reduction in expression was observed in genes belonging to 46 gene ontologies including those representing milk proteins, metabolism, lipid, cholesterol and fatty acid biosynthetic enzymes, immune response, and key transcription factors. A set of 35 genes, commonly regulated in all three models, was identified and their role in lactogenesis was validated by examining their expression in response to Prl stimulation or signal transducer and activator of transcription 5 knockdown in the HC11 mouse mammary cell culture model. The transcript profiles provided by these experiments identify 35 key genes (many for the first time) involved in the secretory activation phase of mammary gland development, show that S179D acts as an antagonist of Prl action, and provide insight into the partial penetrance of failed lactation in Prl receptor heterozygous females.


Subject(s)
DNA-Binding Proteins/metabolism , Lactation/genetics , Mammary Glands, Animal/growth & development , Milk Proteins/metabolism , Trans-Activators/metabolism , Transcription, Genetic , Alleles , Animals , Cells, Cultured , DNA-Binding Proteins/antagonists & inhibitors , Female , Galanin/genetics , Gene Expression Profiling , Lipids/biosynthesis , Mammary Glands, Animal/anatomy & histology , Mammary Glands, Animal/metabolism , Mice , Mice, Knockout , Milk Proteins/antagonists & inhibitors , Mutation , Oligonucleotide Array Sequence Analysis , Phosphorylation , Prolactin/genetics , Prolactin/metabolism , Prolactin/pharmacology , Protein Biosynthesis/genetics , STAT5 Transcription Factor , Trans-Activators/antagonists & inhibitors
16.
Dev Cell ; 38(5): 450-1, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27623380

ABSTRACT

Mammary epithelial phagocytosis is critical for removal of apoptotic cells during involution, but the mechanisms governing this process are largely unknown. In this issue of Developmental Cell, Akhtar et al. (2016) provide insight into mechanisms regulating involution, demonstrating that Rac1 drives the switch from differentiation to phagocytosis in mammary epithelium.


Subject(s)
Apoptosis/genetics , Breast Neoplasms/genetics , Phagocytosis/genetics , rac1 GTP-Binding Protein/genetics , Animals , Breast Neoplasms/pathology , Cell Differentiation/genetics , Epithelial Cells/metabolism , Epithelium/growth & development , Epithelium/metabolism , Female , Humans , Mammals , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , rac1 GTP-Binding Protein/metabolism
17.
Mol Endocrinol ; 17(12): 2436-47, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12933906

ABSTRACT

Decreased expression of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is common in breast cancer and is associated with poor prognosis. p27 is also an important mediator of steroidal regulation of cell cycle progression. We have therefore investigated the role of p27 in mammary epithelial cell proliferation. Examination of the two major functions of p27, assembly of cyclin D1-Cdk4 complexes and inhibition of Cdk2 activity, revealed that cyclin D1-Cdk4 complex formation was not impaired in p27-/- mammary epithelial cells in primary culture. However, cyclin E-Cdk2 activity was increased approximately 3-fold, indicating that the CDK inhibitory function of p27 is important in mammary epithelial cells. Increased epithelial DNA synthesis was observed during pregnancy in p27-/- mammary gland transplants, but this was paralleled by increased apoptosis. During pregnancy and at parturition, development and differentiation of p27+/+ and p27-/- mammary tissue were indistinguishable. These results demonstrate a role for p27 in both the proliferation and survival of mammary epithelial cells. However, the absence of morphological and cellular defects in p27-/- mammary tissue during pregnancy raises the possibility that loss of p27 in breast cancer may not confer an overall growth advantage unless apoptosis is also impaired.


Subject(s)
Cell Cycle Proteins/physiology , Mammary Glands, Animal/embryology , Pregnancy, Animal/physiology , Tumor Suppressor Proteins/physiology , Animals , Apoptosis , Cell Cycle Proteins/genetics , Cell Division , Cell Survival , Cyclin-Dependent Kinase Inhibitor p27 , Epithelial Cells/cytology , Epithelial Cells/physiology , Female , Mammary Glands, Animal/cytology , Mice , Mice, Knockout , Pregnancy , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
18.
Nat Commun ; 6: 6548, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25813983

ABSTRACT

Basal-like breast cancer (BLBC) is a heterogeneous disease with poor prognosis; however, its cellular origins and aetiology are poorly understood. In this study, we show that inhibitor of differentiation 4 (ID4) is a key regulator of mammary stem cell self-renewal and marks a subset of BLBC with a putative mammary basal cell of origin. Using an ID4GFP knock-in reporter mouse and single-cell transcriptomics, we show that ID4 marks a stem cell-enriched subset of the mammary basal cell population. ID4 maintains the mammary stem cell pool by suppressing key factors required for luminal differentiation. Furthermore, ID4 is specifically expressed by a subset of human BLBC that possess a very poor prognosis and a transcriptional signature similar to a mammary stem cell. These studies identify ID4 as a mammary stem cell regulator, deconvolute the heterogeneity of BLBC and link a subset of mammary stem cells to the aetiology of BLBC.


Subject(s)
Breast Neoplasms/genetics , Inhibitor of Differentiation Proteins/genetics , Mammary Glands, Animal/cytology , RNA, Messenger/metabolism , Stem Cells/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Knock-In Techniques , Humans , Inhibitor of Differentiation Proteins/metabolism , Mammary Glands, Animal/metabolism , Mice , Neoplasm Transplantation , Phenotype , Real-Time Polymerase Chain Reaction
19.
Endocrinology ; 144(7): 3196-205, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12810576

ABSTRACT

Hyperprolactinemia results in prostatic hypertrophy and hyperplasia, but it is not known whether prolactin plays an essential role in these processes in the prostate. To address this question, we investigated prostate development, gene expression, and simian virus 40 (SV40)T-induced prostate carcinogenesis in prolactin receptor knockout mice. These animals showed a small increase in dorsolateral and ventral prostate weight but no change in the weight of the anterior prostate. The dorsal but not ventral or lateral lobes showed a 12% loss of epithelial cells; all other morphological parameters were normal. The area of SV40T-induced prostate intraepithelial neoplasia was reduced by 28% in the ventral lobe but not the dorsal lobe, and no tumors were seen in 20 prolactin receptor knockout animals, compared with 1 of 11 detected in wild-type and 4 of 21 found in heterozygous animals. Oligonucleotide microarrays were used to identify essential transcriptional roles of prolactin and revealed a small set of genes with decreased expression involved in sperm/oocyte interaction and copulatory plug formation. Infertility or reduced fertility was apparent in these animals. These findings establish essential though subtle roles for prolactin in the regulation of prostate morphology, gene expression, SV40T-induced neoplasia, and reproductive function.


Subject(s)
Prostate/growth & development , Prostate/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/physiopathology , Receptors, Prolactin/genetics , Androgens/physiology , Animals , Antigens, Polyomavirus Transforming/genetics , Complement C3/genetics , Female , Gene Expression , Hyperprolactinemia/pathology , Hyperprolactinemia/physiopathology , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Mice , Mice, Knockout , Orchiectomy , Pregnancy , Promoter Regions, Genetic , RNA, Messenger/analysis
20.
Biophys Rev ; 6(2): 203-213, 2014 Jun.
Article in English | MEDLINE | ID: mdl-28510180

ABSTRACT

Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.

SELECTION OF CITATIONS
SEARCH DETAIL