Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Commun ; 15(1): 6150, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034314

ABSTRACT

Non-neovascular or dry age-related macular degeneration (AMD) is a multi-factorial disease with degeneration of the aging retinal-pigmented epithelium (RPE). Lysosomes play a crucial role in RPE health via phagocytosis and autophagy, which are regulated by transcription factor EB/E3 (TFEB/E3). Here, we find that increased AKT2 inhibits PGC-1α to downregulate SIRT5, which we identify as an AKT2 binding partner. Crosstalk between SIRT5 and AKT2 facilitates TFEB-dependent lysosomal function in the RPE. AKT2/SIRT5/TFEB pathway inhibition in the RPE induced lysosome/autophagy signaling abnormalities, disrupted mitochondrial function and induced release of debris contributing to drusen. Accordingly, AKT2 overexpression in the RPE caused a dry AMD-like phenotype in aging Akt2 KI mice, as evident from decline in retinal function. Importantly, we show that induced pluripotent stem cell-derived RPE encoding the major risk variant associated with AMD (complement factor H; CFH Y402H) express increased AKT2, impairing TFEB/TFE3-dependent lysosomal function. Collectively, these findings suggest that targeting the AKT2/SIRT5/TFEB pathway may be an effective therapy to delay the progression of dry AMD.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Lysosomes , Macular Degeneration , Proto-Oncogene Proteins c-akt , Retinal Pigment Epithelium , Signal Transduction , Sirtuins , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Animals , Proto-Oncogene Proteins c-akt/metabolism , Sirtuins/metabolism , Sirtuins/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Humans , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Lysosomes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Disease Models, Animal , Induced Pluripotent Stem Cells/metabolism , Male
2.
Autophagy ; 19(1): 92-111, 2023 01.
Article in English | MEDLINE | ID: mdl-35473441

ABSTRACT

In dry age-related macular degeneration (AMD), LCN2 (lipocalin 2) is upregulated. Whereas LCN2 has been implicated in AMD pathogenesis, the mechanism remains unknown. Here, we report that in retinal pigmented epithelial (RPE) cells, LCN2 regulates macroautophagy/autophagy, in addition to maintaining iron homeostasis. LCN2 binds to ATG4B to form an LCN2-ATG4B-LC3-II complex, thereby regulating ATG4B activity and LC3-II lipidation. Thus, increased LCN2 reduced autophagy flux. Moreover, RPE cells from cryba1 KO, as well as sting1 KO and Sting1Gt mutant mice (models with abnormal iron chelation), showed decreased autophagy flux and increased LCN2, indicative of CGAS- and STING1-mediated inflammasome activation. Live cell imaging of RPE cells with elevated LCN2 also showed a correlation between inflammasome activation and increased fluorescence intensity of the Liperfluo dye, indicative of oxidative stress-induced ferroptosis. Interestingly, both in human AMD patients and in mouse models with a dry AMD-like phenotype (cryba1 cKO and KO), the LCN2 homodimer variant is increased significantly compared to the monomer. Sub-retinal injection of the LCN2 homodimer secreted by RPE cells into NOD-SCID mice leads to retinal degeneration. In addition, we generated an LCN2 monoclonal antibody that neutralizes both the monomer and homodimer variants and rescued autophagy and ferroptosis activities in cryba1 cKO mice. Furthermore, the antibody rescued retinal function in cryba1 cKO mice as assessed by electroretinography. Here, we identify a molecular pathway whereby increased LCN2 elicits pathophysiology in the RPE, cells known to drive dry AMD pathology, thus providing a possible therapeutic strategy for a disease with no current treatment options.Abbreviations: ACTB: actin, beta; Ad-GFP: adenovirus-green fluorescent protein; Ad-LCN2: adenovirus-lipocalin 2; Ad-LCN2-GFP: adenovirus-LCN2-green fluorescent protein; LCN2AKT2: AKT serine/threonine kinase 2; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ARPE19: adult retinal pigment epithelial cell line-19; Asp278: aspartate 278; ATG4B: autophagy related 4B cysteine peptidase; ATG4C: autophagy related 4C cysteine peptidase; ATG7: autophagy related 7; ATG9B: autophagy related 9B; BLOC-1: biogenesis of lysosomal organelles complex 1; BLOC1S1: biogenesis of lysosomal organelles complex 1 subunit 1; C57BL/6J: C57 black 6J; CGAS: cyclic GMP-AMP synthase; ChQ: chloroquine; cKO: conditional knockout; Cys74: cysteine 74; Dab2: DAB adaptor protein 2; Def: deferoxamine; DHE: dihydroethidium; DMSO: dimethyl sulfoxide; ERG: electroretinography; FAC: ferric ammonium citrate; Fe2+: ferrous; FTH1: ferritin heavy chain 1; GPX: glutathione peroxidase; GST: glutathione S-transferase; H2O2: hydrogen peroxide; His280: histidine 280; IFNL/IFNλ: interferon lambda; IL1B/IL-1ß: interleukin 1 beta; IS: Inner segment; ITGB1/integrin ß1: integrin subunit beta 1; KO: knockout; LC3-GST: microtubule associated protein 1 light chain 3-GST; C-terminal fusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LCN2: lipocalin 2; mAb: monoclonal antibody; MDA: malondialdehyde; MMP9: matrix metallopeptidase 9; NLRP3: NLR family pyrin domain containing 3; NOD-SCID: nonobese diabetic-severe combined immunodeficiency; OS: outer segment; PBS: phosphate-buffered saline; PMEL/PMEL17: premelanosome protein; RFP: red fluorescent protein; rLCN2: recombinant LCN2; ROS: reactive oxygen species; RPE SM: retinal pigmented epithelium spent medium; RPE: retinal pigment epithelium; RSL3: RAS-selective lethal; scRNAseq: single-cell ribonucleic acid sequencing; SD-OCT: spectral domain optical coherence tomography; shRNA: small hairpin ribonucleic acid; SM: spent medium; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; STING1: stimulator of interferon response cGAMP interactor 1; TYR: tyrosinase; VCL: vinculin; WT: wild type.


Subject(s)
Ferroptosis , Macular Degeneration , Animals , Humans , Mice , Antibodies, Monoclonal , Autophagy/physiology , Inflammasomes/metabolism , Lipocalin-2/genetics , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice, Inbred NOD , Mice, SCID , Nucleotidyltransferases/metabolism
3.
bioRxiv ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37609254

ABSTRACT

Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.

4.
Cells ; 11(22)2022 11 09.
Article in English | MEDLINE | ID: mdl-36428965

ABSTRACT

In dry age-related macular degeneration (AMD), inflammation plays a key role in disease pathogenesis. Innate immune cells such as microglia and neutrophils infiltrate the sub-retinal space (SRS) to induce chronic inflammation and AMD progression. But a major gap in our understanding is how these cells interact with each other in AMD. Here, we report a novel concept of how dynamic interactions between microglia and neutrophils contribute to AMD pathology. Using well-characterized genetically engineered mouse models as tools, we show that in the diseased state, retinal pigmented epithelial (RPE) cells trigger pro-inflammatory (M1) transition in microglia with diminished expression of the homeostatic marker, CX3CR1. Activated microglia localize to the SRS and regulate local neutrophil function, triggering their activation and thereby inducing early RPE changes. Ligand receptor (LR)-loop analysis and cell culture studies revealed that M1 microglia also induce the expression of neutrophil adhesion mediators (integrin ß1/α4) through their interaction with CD14 on microglia. Furthermore, microglia-induced neutrophil activation and subsequent neutrophil-mediated RPE alterations were mitigated by inhibiting Akt2 in microglia. These results suggest that the Akt2 pathway in microglia drives M1 microglia-mediated neutrophil activation, thereby triggering early RPE degeneration and is a novel therapeutic target for early AMD, a stage without treatment options.


Subject(s)
Macular Degeneration , Neutrophils , Mice , Animals , Neutrophils/metabolism , Microglia/metabolism , Macular Degeneration/metabolism , Disease Models, Animal , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL