Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Therm Biol ; 119: 103785, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38320933

ABSTRACT

Extracellular Ca2+ plays a pivotal role in the regulation of cardiac contractility under normal and extreme conditions. Here, by using nickel chloride (NiCl2), a non-specific blocker of extracellular Ca2+ influx, we studied the input of extracellular Ca2+ on the regulation of papillary muscle (PM) contractility under normal and hypothermic conditions in ground squirrels (GS), and rats. By measuring isometric force of contraction, we studied how NiCl2 affects force-frequency relationship and the rest effect in PM of these species at 30 °C and 10 °C. We found that at 30 °C 1.5 mM NiCl2 significantly reduced force of contraction across entire frequency range in active GS and rats, whereas in hibernating GS force of contraction was reduced at low and high frequency range. Additionally, NiCl2 evoked spontaneous contractility in rats but not GS PM. The rest effect was significantly reduced by NiCl2 for active GS and rats but not hibernating GS. At 10 °C, NiCl2 fully reduced contractility in active GS and, to a lesser extent, in rats, whereas in hibernating GS it was significant only at 0.3 Hz. The rest effect was significantly reduced by NiCl2 in both active and hibernating GS, whereas it was unmasked in rats that had high contractility under hypothermic conditions in control. Our results show a significant contribution of extracellular Ca2+ to myocardial contractility in GS not only in active but also in hibernating states, especially under hypothermic conditions, whereas limitation of extracellular Ca2+ influx in rats under hypothermia can play protective role for myocardial contractility.


Subject(s)
Hibernation , Hypothermia , Nickel , Rats , Animals , Papillary Muscles/physiology , Hypothermia/chemically induced , Rats, Wistar , Sciuridae/physiology , Hibernation/physiology
2.
Biochem Biophys Res Commun ; 615: 17-23, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35605400

ABSTRACT

It has been shown that anti-inflammatory cytokine interleukin-10 (IL-10) can exert anti-hypoxic effect preventing post-hypoxic neuronal hyperexcitability. Yet, exact mechanisms of IL-10 mediated anti-hypoxic action on neuronal function are not fully understood. We suggested that IL-10 can exert its anti-hypoxic action via modulation of activity of two-pore potassium TASK-1 and TASK-3 channels. To study the involvement of TASK-1 and TASK-3 channels we employed a combination of whole-cell patch clamp and pharmacological inhibitory analysis to assess if IL-10 and brief hypoxic episode can modulate K+ background leak current (Ileak) and membrane input resistance (Rin) in cultured hippocampal neurons. We found that IL-10 in a dose-dependent manner can significantly increase Ileak with concomitant reduction in Rin. Neurons that were exposed to brief hypoxic episode on contrary showed significant decrease in Ileak with concomitant increase in Rin. Pretreatment with IL-10 prior hypoxic episode was able to abolish negative effect of hypoxia on Ileak and Rin. IL-10 potentiating action on Ileak and Rin was occluded by co-addition of selective blockers of TASK-1 and TASK-3 channels - ML365 and PK-THPP. Co-addition of LY294002, an inhibitor of PI3-kinase occluded IL-10 action on Ileak and Rin showing involvement of PI3K-associated pathway in IL-10 mediated regulation of TASK channel function. Our results provide new insights into IL-10 mediated neuroprotective and anti-hypoxic actions showing TASK-1 and TASK-3 channels as downstream targets of this anti-inflammatory cytokine.


Subject(s)
Hippocampus , Interleukin-10 , Anti-Inflammatory Agents/pharmacology , Hippocampus/metabolism , Humans , Hypoxia/metabolism , Interleukin-10/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Potassium Channels, Tandem Pore Domain/metabolism
3.
Int J Mol Sci ; 23(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35163623

ABSTRACT

In neurons, changes in Akt activity have been detected in response to the stimulation of transmembrane receptors. However, the mechanisms that lead to changes in neuronal function upon Akt inhibition are still poorly understood. In the present study, we interrogate how Akt inhibition could affect the activity of the neuronal Nav channels with while impacting intrinsic excitability. To that end, we employed voltage-clamp electrophysiological recordings in heterologous cells expressing the Nav1.6 channel isoform and in hippocampal CA1 pyramidal neurons in the presence of triciribine, an inhibitor of Akt. We showed that in both systems, Akt inhibition resulted in a potentiation of peak transient Na+ current (INa) density. Akt inhibition correspondingly led to an increase in the action potential firing of the CA1 pyramidal neurons that was accompanied by a decrease in the action potential current threshold. Complementary confocal analysis in the CA1 pyramidal neurons showed that the inhibition of Akt is associated with the lengthening of Nav1.6 fluorescent intensity along the axonal initial segment (AIS), providing a mechanism for augmented neuronal excitability. Taken together, these findings provide evidence that Akt-mediated signal transduction might affect neuronal excitability in a Nav1.6-dependent manner.


Subject(s)
Action Potentials , Hippocampus/drug effects , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , HEK293 Cells , Hippocampus/metabolism , Hippocampus/physiology , Humans , Mice , Proto-Oncogene Proteins c-akt/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/physiology
4.
Int J Mol Sci ; 21(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050414

ABSTRACT

Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.


Subject(s)
Calcium/metabolism , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Carnitine/analogs & derivatives , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Phospholipases/metabolism , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Carnitine/metabolism , Carnitine/pharmacology , Evoked Potentials/drug effects , Homeostasis , Mitochondria, Heart/drug effects , Muscle Cells/metabolism , Sarcoplasmic Reticulum/metabolism , Sodium/metabolism
5.
Biochem Biophys Res Commun ; 518(3): 486-491, 2019 10 20.
Article in English | MEDLINE | ID: mdl-31434608

ABSTRACT

It has been shown that pro-inflammatory cytokines preferentially attenuate long-term potentiation (LTP), at the same time the effect of anti-inflammatory cytokines on synaptic plasticity has not been fully studied yet. Here we studied the effect of two anti-inflammatory cytokines - interleukin-10 (IL-10) and transforming growth factor-ß1 (TGF-ß1) on long-term potentiation. It was found that exogenously added IL-10 as well as TGF-ß1 were able to effectively facilitate LTP evoked with ether high frequency or theta burst stimulation protocols in CA1 area of hippocampus. Effectiveness of IL-10 and TGF-ß1 on LTP varied depending on the concentration of used cytokine and type of tetanic stimulation protocol used for LTP induction. Overall the positive effect of studied cytokines on LTP was associated with their ability to increase basal synaptic strength at Schaffer collateral - CA1 synapse. At the same time IL-10 and TGF-ß1 did not have any effect on short-term plasticity. Our results provide new evidence upon the modulatory effects that anti-inflammatory cytokines exert on synaptic plasticity further highlighting their potency as modulators of neuronal function.


Subject(s)
CA1 Region, Hippocampal/physiology , Interleukin-10/immunology , Long-Term Potentiation , Neuronal Plasticity , Transforming Growth Factor beta1/immunology , Animals , CA1 Region, Hippocampal/immunology , Male , Rats, Wistar
6.
Int J Mol Sci ; 20(13)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31324059

ABSTRACT

Anti-inflammatory cytokines are known to exert neuroprotective action ameliorating aberrant neuronal network activity associated with inflammatory responses. Yet, it is still not fully understood if anti-inflammatory cytokines play a significant role in the regulation of synaptic activity under normal conditions. Thus, the aim of our study was to investigate the effect of Interleukin-10 (IL-10) on neuronal synaptic transmission and plasticity. For this we tested the effect of IL-10 on miniature excitatory postsynaptic currents (mEPSC) and intracellular Ca2+ responses using whole-cell patch clamp and fluorescence microscopy in 13-15 DIV primary hippocampal neuroglial culture. We found that IL-10 significantly potentiated basal glutamatergic excitatory synaptic transmission within 15 min after application. Obtained results revealed a presynaptic nature of the effect, as IL-10 in a dose-dependent manner significantly increased the frequency but not the amplitude of mEPSC. Further, we tested the effect of IL-10 on mEPSC in a model of homeostatic synaptic plasticity (HSP) induced by treatment of primary hippocampal culture with 1 µM of tetrodotoxin (TTX) for a 24 h. It was found that 15 min application of IL-10 at established HSP resulted in enhanced mEPSC frequency, thus partially compensating for a decrease in the mEPSC frequency associated with TTX-induced HSP. Next, we studied if IL-10 can influence induction of HSP. We found that co-incubation of IL-10 with 1 µM of TTX for 24 h induced synaptic scaling, significantly increasing the amplitude of mEPSC and Ca2+ responses to application of the AMPA agonist, 5-Fluorowillardiine, thus facilitating a compensatory postsynaptic mechanism at HSP condition. Our results indicate that IL-10 potentiates synaptic activity in a dose- and time-dependent manner exerting both presynaptic (short-term exposure) and postsynaptic (long-term exposure) action. Obtained results demonstrate involvement of IL-10 in the regulation of basal glutamatergic synaptic transmission and plasticity at normal conditions.


Subject(s)
Hippocampus/cytology , Interleukin-10/pharmacology , Neurons/drug effects , Neurons/metabolism , Synaptic Transmission/drug effects , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Cells, Cultured , Microscopy, Fluorescence , Neuronal Plasticity/drug effects , Patch-Clamp Techniques , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Tetrodotoxin/pharmacology
7.
FASEB J ; 30(6): 2171-86, 2016 06.
Article in English | MEDLINE | ID: mdl-26917740

ABSTRACT

Recent data shows that fibroblast growth factor 14 (FGF14) binds to and controls the function of the voltage-gated sodium (Nav) channel with phenotypic outcomes on neuronal excitability. Mutations in the FGF14 gene in humans have been associated with brain disorders that are partially recapitulated in Fgf14(-/-) mice. Thus, signaling pathways that modulate the FGF14:Nav channel interaction may be important therapeutic targets. Bioluminescence-based screening of small molecule modulators of the FGF14:Nav1.6 complex identified 4,5,6,7 -: tetrabromobenzotriazole (TBB), a potent casein kinase 2 (CK2) inhibitor, as a strong suppressor of FGF14:Nav1.6 interaction. Inhibition of CK2 through TBB reduces the interaction of FGF14 with Nav1.6 and Nav1.2 channels. Mass spectrometry confirmed direct phosphorylation of FGF14 by CK2 at S228 and S230, and mutation to alanine at these sites modified FGF14 modulation of Nav1.6-mediated currents. In 1 d in vitro hippocampal neurons, TBB induced a reduction in FGF14 expression, a decrease in transient Na(+) current amplitude, and a hyperpolarizing shift in the voltage dependence of Nav channel steady-state inactivation. In mature neurons, TBB reduces the axodendritic polarity of FGF14. In cornu ammonis area 1 hippocampal slices from wild-type mice, TBB impairs neuronal excitability by increasing action potential threshold and lowering firing frequency. Importantly, these changes in excitability are recapitulated in Fgf14(-/-) mice, and deletion of Fgf14 occludes TBB-dependent phenotypes observed in wild-type mice. These results suggest that a CK2-FGF14 axis may regulate Nav channels and neuronal excitability.-Hsu, W.-C. J., Scala, F., Nenov, M. N., Wildburger, N. C., Elferink, H., Singh, A. K., Chesson, C. B., Buzhdygan, T., Sohail, M., Shavkunov, A. S., Panova, N. I., Nilsson, C. L., Rudra, J. S., Lichti, C. F., Laezza, F. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability.


Subject(s)
Casein Kinase II/metabolism , Fibroblast Growth Factors/metabolism , Neurons/physiology , Voltage-Gated Sodium Channels/physiology , Animals , Casein Kinase II/genetics , Female , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Enzymologic , HEK293 Cells , Hippocampus/cytology , Hippocampus/physiology , Humans , Male , Mice , Mice, Knockout , Patch-Clamp Techniques
8.
Mol Cell Proteomics ; 14(5): 1288-300, 2015 May.
Article in English | MEDLINE | ID: mdl-25724910

ABSTRACT

Voltage-gated sodium channels (Nav1.1-Nav1.9) are responsible for the initiation and propagation of action potentials in neurons, controlling firing patterns, synaptic transmission and plasticity of the brain circuit. Yet, it is the protein-protein interactions of the macromolecular complex that exert diverse modulatory actions on the channel, dictating its ultimate functional outcome. Despite the fundamental role of Nav channels in the brain, information on its proteome is still lacking. Here we used affinity purification from crude membrane extracts of whole brain followed by quantitative high-resolution mass spectrometry to resolve the identity of Nav1.2 protein interactors. Of the identified putative protein interactors, fibroblast growth factor 12 (FGF12), a member of the nonsecreted intracellular FGF family, exhibited 30-fold enrichment in Nav1.2 purifications compared with other identified proteins. Using confocal microscopy, we visualized native FGF12 in the brain tissue and confirmed that FGF12 forms a complex with Nav1.2 channels at the axonal initial segment, the subcellular specialized domain of neurons required for action potential initiation. Co-immunoprecipitation studies in a heterologous expression system validate Nav1.2 and FGF12 as interactors, whereas patch-clamp electrophysiology reveals that FGF12 acts synergistically with CaMKII, a known kinase regulator of Nav channels, to modulate Nav1.2-encoded currents. In the presence of CaMKII inhibitors we found that FGF12 produces a bidirectional shift in the voltage-dependence of activation (more depolarized) and the steady-state inactivation (more hyperpolarized) of Nav1.2, increasing the channel availability. Although providing the first characterization of the Nav1.2 CNS proteome, we identify FGF12 as a new functionally relevant interactor. Our studies will provide invaluable information to parse out the molecular determinant underlying neuronal excitability and plasticity, and extending the relevance of iFGFs signaling in the normal and diseased brain.


Subject(s)
Brain/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Fibroblast Growth Factors/metabolism , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Brain/cytology , Brain/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Cell Membrane , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/pharmacology , Gene Expression , HEK293 Cells , Humans , Immunoprecipitation , Molecular Sequence Annotation , NAV1.2 Voltage-Gated Sodium Channel/chemistry , NAV1.2 Voltage-Gated Sodium Channel/genetics , Neuronal Plasticity , Neurons/cytology , Neurons/drug effects , Patch-Clamp Techniques , Protein Binding , Proteome/genetics , Proteome/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
J Mol Cell Cardiol ; 100: 9-20, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27659409

ABSTRACT

Sustained cardiac adrenergic stimulation has been implicated in the development of heart failure and ventricular dysrhythmia. Conventionally, α2 adrenoceptors (α2-AR) have been assigned to a sympathetic short-loop feedback aimed at attenuating catecholamine release. We have recently revealed the expression of α2-AR in the sarcolemma of cardiomyocytes and identified the ability of α2-AR signaling to suppress spontaneous Ca2+ transients through nitric oxide (NO) dependent pathways. Herein, patch-clamp measurements and serine/threonine phosphatase assay revealed that, in isolated rat cardiomyocytes, activation of α2-AR suppressed L-type Ca2+ current (ICaL) via stimulation of NO synthesis and protein kinase G- (PKG) dependent activation of phosphatase reactions, counteracting isoproterenol-induced ß-adrenergic activation. Under stimulation with norepinephrine (NE), an agonist of ß- and α-adrenoceptors, the α2-AR antagonist yohimbine substantially elevated ICaL at NE levels >10nM. Concomitantly, yohimbine potentiated triggered intracellular Ca2+ dynamics and contractility of cardiac papillary muscles. Therefore, in addition to the α2-AR-mediated feedback suppression of sympathetic and adrenal catecholamine release, α2-AR in cardiomyocytes can govern a previously unrecognized local cardiomyocyte-delimited stress-reactive signaling pathway. We suggest that such aberrant α2-AR signaling may contribute to the development of cardiomyopathy under sustained sympathetic drive. Indeed, in cardiomyocytes of spontaneously hypertensive rats (SHR), an established model of cardiac hypertrophy, α2-AR signaling was dramatically reduced despite increased α2-AR mRNA levels compared to normal cardiomyocytes. Thus, targeting α2-AR signaling mechanisms in cardiomyocytes may find implications in medical strategies against maladaptive cardiac remodeling associated with chronic sympathoadrenal stimulation.


Subject(s)
Myocytes, Cardiac/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Sarcolemma/metabolism , Adrenergic alpha-2 Receptor Agonists/pharmacology , Animals , Calcium Signaling/drug effects , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cyclic GMP/metabolism , Disease Models, Animal , Male , Myocardial Contraction , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Nitric Oxide/metabolism , Protein Phosphatase 2/metabolism , Rats , Rats, Inbred SHR , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/metabolism , Sarcolemma/drug effects , Signal Transduction/drug effects
10.
Biochim Biophys Acta ; 1850(4): 832-44, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25615535

ABSTRACT

BACKGROUND: Phosphorylation plays an essential role in regulating voltage-gated sodium (Na(v)) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Na(v) channels. We posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Na(v) channels. METHODS: We used patch-clamp electrophysiology to record sodium currents from Na(v)1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. RESULTS: We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Na(v)1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3ß suppressed Na(v)1.2-encoded currents. Neither mRNA nor total protein expression was changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Na(v)1.2 channel indicates that cell surface expression of CD4-Na(v)1.2 C-tail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3ß phosphorylates T(1966) at the C-terminal tail of Na(v)1.2. CONCLUSION: These findings provide evidence for a new mechanism by which GSK3 modulates Na(v) channel function via its C-terminal tail. GENERAL SIGNIFICANCE: These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders.


Subject(s)
Glycogen Synthase Kinase 3/physiology , NAV1.2 Voltage-Gated Sodium Channel/physiology , Amino Acid Sequence , Glycogen Synthase Kinase 3/antagonists & inhibitors , HEK293 Cells , Humans , Molecular Sequence Data , NAV1.2 Voltage-Gated Sodium Channel/chemistry , Phosphorylation
11.
J Neurosci ; 34(3): 1028-36, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24431460

ABSTRACT

Hippocampal network hyperexcitability is considered an early indicator of Alzheimer's disease (AD) memory impairment. Some AD mouse models exhibit similar network phenotypes. In this study we focused on dentate gyrus (DG) granule cell spontaneous and evoked properties in 9-month-old Tg2576 mice that model AD amyloidosis and cognitive deficits. Using whole-cell patch-clamp recordings, we found that Tg2576 DG granule cells exhibited spontaneous EPSCs that were higher in frequency but not amplitude compared with wild-type mice, suggesting hyperactivity of DG granule cells via a presynaptic mechanism. Further support of a presynaptic mechanism was revealed by increased I-O relationships and probability of release in Tg2576 DG granule cells. Since we and others have shown that activation of the peroxisome proliferator-activated receptor gamma (PPARγ) axis improves hippocampal cognition in mouse models for AD as well as benefitting memory performance in some humans with early AD, we investigated how PPARγ agonism affected synaptic activity in Tg2576 DG. We found that PPARγ agonism normalized the I-O relationship of evoked EPSCs, frequency of spontaneous EPSCs, and probability of release that, in turn, correlated with selective expression of DG proteins essential for presynaptic SNARE function that are altered in patients with AD. These findings provide evidence that DG principal cells may contribute to early AD hippocampal network hyperexcitability via a presynaptic mechanism, and that hippocampal cognitive enhancement via PPARγ activation occurs through regulation of presynaptic vesicular proteins critical for proper glutamatergic neurotransmitter release, synaptic transmission, and short-term plasticity.


Subject(s)
Dentate Gyrus/physiology , Nootropic Agents/pharmacology , PPAR gamma/agonists , PPAR gamma/physiology , Presynaptic Terminals/physiology , Thiazolidinediones/pharmacology , Amyloid beta-Protein Precursor/genetics , Animals , Dentate Gyrus/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Presynaptic Terminals/drug effects , Protein Interaction Maps/drug effects , Protein Interaction Maps/physiology , Protein Transport/drug effects , Protein Transport/physiology , Rosiglitazone
12.
J Neurophysiol ; 113(6): 1712-26, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25540218

ABSTRACT

Early cognitive impairment in Alzheimer's disease (AD) correlates with medial temporal lobe dysfunction, including two areas essential for memory formation: the entorhinal cortex and dentate gyrus (DG). In the Tg2576 animal model for AD amyloidosis, activation of the peroxisome proliferator-activated receptor-gamma (PPARγ) with rosiglitazone (RSG) ameliorates hippocampus-dependent cognitive impairment and restores aberrant synaptic activity at the entorhinal cortex to DG granule neuron inputs. It is unknown, however, whether intrinsic firing properties of DG granule neurons in these animals are affected by amyloid-ß pathology and if they are sensitive to RSG treatment. Here, we report that granule neurons from 9-mo-old wild-type and Tg2576 animals can be segregated into two cell types with distinct firing properties and input resistance that correlate with less mature type I and more mature type II neurons. The DG type I cell population was greater than type II in wild-type littermates. In the Tg2576 animals, the type I and type II cell populations were nearly equal but could be restored to wild-type levels through cognitive enhancement with RSG. Furthermore, Tg2576 cell firing frequency and spike after depolarization were decreased in type I and increased in type II cells, both of which could also be restored to wild-type levels upon RSG treatment. That these parameters were restored by PPARγ activation emphasizes the therapeutic value of RSG against early AD cognitive impairment.


Subject(s)
Action Potentials , Alzheimer Disease/metabolism , Neurons/physiology , PPAR gamma/metabolism , Alzheimer Disease/physiopathology , Animals , Cognition , Entorhinal Cortex/cytology , Entorhinal Cortex/drug effects , Entorhinal Cortex/physiopathology , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , PPAR gamma/agonists , Rosiglitazone , Thiazolidinediones/pharmacology
13.
J Biol Chem ; 288(27): 19370-85, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23640885

ABSTRACT

The FGF14 protein controls biophysical properties and subcellular distribution of neuronal voltage-gated Na(+) (Nav) channels through direct binding to the channel C terminus. To gain insights into the dynamic regulation of this protein/protein interaction complex, we employed the split luciferase complementation assay to screen a small molecule library of kinase inhibitors against the FGF14·Nav1.6 channel complex and identified inhibitors of GSK3 as hits. Through a combination of a luminescence-based counter-screening, co-immunoprecipitation, patch clamp electrophysiology, and quantitative confocal immunofluorescence, we demonstrate that inhibition of GSK3 reduces the assembly of the FGF14·Nav channel complex, modifies FGF14-dependent regulation of Na(+) currents, and induces dissociation and subcellular redistribution of the native FGF14·Nav channel complex in hippocampal neurons. These results further emphasize the role of FGF14 as a critical component of the Nav channel macromolecular complex, providing evidence for a novel GSK3-dependent signaling pathway that might control excitability through specific protein/protein interactions.


Subject(s)
Fibroblast Growth Factors/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/metabolism , Multiprotein Complexes/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Animals , Enzyme Inhibitors/pharmacology , Fibroblast Growth Factors/genetics , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , HEK293 Cells , Hippocampus/cytology , Humans , Mice , Mice, Knockout , Multiprotein Complexes/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurons/cytology , Rats , Signal Transduction/drug effects
14.
J Alzheimers Dis ; 94(2): 513-518, 2023.
Article in English | MEDLINE | ID: mdl-37334603

ABSTRACT

BACKGROUND: Retromer complex proteins are decreased in postmortem brain tissues from Down syndrome subjects and inversely correlate with the Alzheimer's disease-like neuropathology. However, whether targeting in vivo the retromer system affects cognitive deficits and synaptic function in Down syndrome remains unknown. OBJECTIVE: The aim of the current study was to examine the effects of pharmacological retromer stabilization on cognitive and synaptic functions in a mouse model of Down syndrome. METHODS: Ts65dn mice were administered the pharmacological chaperone, TPT-172, or vehicle from 4 to 9 months of age and then assessed for changes in cognitive function. To assess the effects of TPT-172 on synaptic plasticity, hippocampal slices from Ts65dn mice were incubated in TPT-172 and used for field potential recordings. RESULTS: Chronic TPT-172 treatment improved performance in cognitive function tests, its incubation with hippocampal slices ameliorated synaptic function response. CONCLUSION: Pharmacological stabilization of the retromer complex improves synaptic plasticity and memory in a mouse model of Down syndrome. These results support the therapeutic potential of pharmacological retromer stabilization for individual with Down syndrome.


Subject(s)
Alzheimer Disease , Down Syndrome , Mice , Animals , Down Syndrome/metabolism , Mice, Transgenic , Cognition , Neuronal Plasticity/physiology , Alzheimer Disease/pathology , Hippocampus/pathology , Disease Models, Animal
15.
Biol Sex Differ ; 14(1): 52, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596655

ABSTRACT

BACKGROUND: Glutamate signaling within the nucleus accumbens underlies motivated behavior and is involved in psychiatric disease. Although behavioral sex differences in these processes are well-established, the neural mechanisms driving these differences are largely unexplored. In these studies, we examine potential sex differences in synaptic plasticity and excitatory transmission within the nucleus accumbens core. Further understanding of baseline sex differences in reward circuitry will shed light on potential mechanisms driving behavioral differences in motivated behavior and psychiatric disease. METHODS: Behaviorally naïve adult male and female Long-Evans rats, C57Bl/6J mice, and constitutive PKMζ knockout mice were killed and tissue containing the nucleus accumbens core was collected for ex vivo slice electrophysiology experiments. Electrophysiology recordings examined baseline sex differences in synaptic plasticity and transmission within this region and the potential role of PKMζ in long-term depression. RESULTS: Within the nucleus accumbens core, both female mice and rats exhibit higher AMPA/NMDA ratios compared to male animals. Further, female mice have a larger readily releasable pool of glutamate and lower release probability compared to male mice. No significant sex differences were detected in spontaneous excitatory postsynaptic current amplitude or frequency. Finally, the threshold for induction of long-term depression was lower for male animals than females, an effect that appears to be mediated, in part, by PKMζ. CONCLUSIONS: We conclude that there are baseline sex differences in synaptic plasticity and excitatory transmission in the nucleus accumbens core. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.


Understanding normal neural signaling within the nucleus accumbens, a key brain region involved in psychiatric disease including substance use disorder and depression, could provide insight into treatment options for these disorders. Although we know the behaviors regulated by the nucleus accumbens can differ between males and females, we do not understand the underlying differences in brain processing that could contribute to these behavioral differences. Further, even in cases when these behaviors are not different, the underlying brain signaling may exhibit sex-specific mechanisms. The current studies examined excitatory signaling with the nucleus accumbens in both rats and mice at the level of both individual cells and circuits. We found that female rodents (rats and mice) exhibit higher levels of excitatory signaling within the nucleus accumbens than male rodents. Further, procedures that can dampen neural transmission in males are not sufficient to do so in females, suggesting that excitatory signaling in the nucleus accumbens of females is less plastic. Finally, our last set of studies utilized mice missing the protein, PKMζ, and demonstrated that this reversed some of the sex differences seen in normal mice, pointing to a critical role for this protein in maintaining these differences. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.


Subject(s)
Glutamic Acid , Nucleus Accumbens , Female , Male , Mice , Rats , Animals , Rats, Long-Evans , Sex Characteristics , Excitatory Postsynaptic Potentials , Mice, Inbred C57BL , Mice, Knockout
16.
Toxins (Basel) ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35202116

ABSTRACT

Cardiotoxins (CaTxs) are a group of snake toxins that affect the cardiovascular system (CVS). Two types (S and P) of CaTxs are known, but the exact differences in the effects of these types on CVS have not been thoroughly studied. We investigated cellular mechanisms of action on CVS for Naja oxiana cobra CaTxs CTX-1 (S-type) and CTX-2 (P-type) focusing on the papillary muscle (PM) contractility and contraction of aortic rings (AR) supplemented by pharmacological analysis. It was found that CTX-1 and CTX-2 exerted dose-dependent effects manifested in PM contracture and AR contraction. CTX-2 impaired functions of PM and AR more strongly than CTX-1. Effects of CaTxs on PM were significantly reduced by nifedipine, an L-type Ca2+ channel blocker, and by KB-R7943, an inhibitor of reverse-mode Na+/Ca2+ exchange. Furthermore, 2-aminoethoxydiphenyl borate, an inhibitor of store-operated calcium entry, partially restored PM contractility damaged by CaTxs. The CaTx influence on AR contracture was significantly reduced by nifedipine and KB-R7943. The involvement of reverse-mode Na+/Ca2+ exchange in the effect of CaTxs on the rat aorta was shown for the first time. The results obtained indicate that CaTx effects on CVS are mainly associated with disturbance of transporting systems responsible for the Ca2+ influx.


Subject(s)
Aorta/drug effects , Cardiotoxins/pharmacology , Elapid Venoms , Naja naja , Papillary Muscles/drug effects , Animals , Aorta/physiology , Male , Muscle Contraction/drug effects , Papillary Muscles/physiology , Rats, Wistar , Vasoconstriction/drug effects
17.
Membranes (Basel) ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557146

ABSTRACT

Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used ß-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM ß-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in ß-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after ß-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating ß-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of ß-NAD and ammonia on rat papillary muscle contractile activity.

18.
J Comp Physiol B ; 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34297192

ABSTRACT

The effect of phenylephrine (PE) on right ventricle papillary muscle (PM) and aortic segment (AS) contractile activity was studied in long-tailed ground squirrels Urocitellus undulatus during summer activity, torpor and interbout active (IBA) periods in comparison to rat. We found that PE (10 µM) exerts positive inotropic effect on ground squirrel PM that was blocked by α1-AR inhibitor-prazosin. PE differently affected frequency dependence of PM contraction in ground squirrels and rats. PE significantly increased the force of PM contraction in summer and hibernating ground squirrels including both torpor and IBA predominantly at the range of low stimulation frequencies (0.003-0.1 Hz), while in rat PM it was evident only at high stimulation frequency range (0.2-1.0 Hz). Further, it was found that PE vasoconstrictor effect on AS contractility is significantly higher in ground squirrels of torpid state compared to IBA and summer periods. Overall vasoconstrictor effect of PE was significantly higher in AS of ground squirrels of all periods compared to rats. Positive inotropic effect of PE on PM along with its vasoconstrictor effect on AS of ground squirrels was not affected by pretreatment with inhibitors of L-type Ca2+ channels, or Na+/Ca2+ exchanger or Ca2+-ATPase but was completely blocked by an inhibitor of store-operated Ca2+ entry (SOCE)-2-APB, suggesting the involvement of SOCE in the mechanisms underlying PE action on ground squirrel cardiovascular system. Obtained results support an idea about the significant role of alpha1-AR in adaptive mechanisms critical for the maintaining of cardiovascular contractile function in long-tailed ground squirrel Urocitellus undulatus.

19.
Neuropharmacology ; 183: 108398, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33181146

ABSTRACT

Substance use disorders for cocaine are major public health concerns with few effective treatment options. Therefore, identification of novel pharmacotherapeutic targets is critical for future therapeutic development. Evolution has ensured that genes are expressed largely only where they are needed. Therefore, examining the gene expression landscape of the nucleus accumbens shell (NAcSh), a brain region important for reward related behaviors, may lead to the identification of novel targets for cocaine use disorder. In this study, we conducted a novel two-step topographic transcriptomic analysis using five seed transcripts with enhanced expression in the NAcSh to identify transcripts with similarly enhanced expression utilizing the correlation feature to search the more than 20,000 in situ hybridization experiments of the Allen Mouse Brain Atlas. Transcripts that correlated with at least three seed transcripts were analyzed with Ingenuity Pathway Analysis (IPA). We identified 7-fold more NAcSh-enhanced transcripts than our previous analysis using single voxels in the NAcSh as the seed. Analysis of the resulting transcripts with IPA identified many previously identified signaling pathways such as retinoic acid signaling as well as novel pathways. Manipulation of the retinoic acid pathway specifically in the NAcSh of male rats via viral vector-mediated RNA interference targeting fatty acid binding protein 5 (FABP5) decreased cocaine self-administration and modulates excitability of medium spiny neurons in the NAcSh. These results not only validate the prospective strategy of conducting a topographic transcriptomic analysis, but also further validate retinoic acid signaling as a promising pathway for pharmacotherapeutic development against cocaine use disorder.


Subject(s)
Cocaine-Related Disorders/metabolism , Eye Proteins/physiology , Fatty Acid-Binding Proteins/deficiency , Fatty Acid-Binding Proteins/physiology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/physiology , Nucleus Accumbens/metabolism , Transcriptome , Action Potentials/drug effects , Animals , Cocaine/pharmacology , Gene Expression , Male , Nucleus Accumbens/physiology , Rats , Rats, Sprague-Dawley , Self Administration , Tretinoin/metabolism
20.
Front Mol Neurosci ; 14: 643860, 2021.
Article in English | MEDLINE | ID: mdl-34276302

ABSTRACT

The axon initial segment (AIS) is a highly regulated subcellular domain required for neuronal firing. Changes in the AIS protein composition and distribution are a form of structural plasticity, which powerfully regulates neuronal activity and may underlie several neuropsychiatric and neurodegenerative disorders. Despite its physiological and pathophysiological relevance, the signaling pathways mediating AIS protein distribution are still poorly studied. Here, we used confocal imaging and whole-cell patch clamp electrophysiology in primary hippocampal neurons to study how AIS protein composition and neuronal firing varied in response to selected kinase inhibitors targeting the AKT/GSK3 pathway, which has previously been shown to phosphorylate AIS proteins. Image-based features representing the cellular pattern distribution of the voltage-gated Na+ (Nav) channel, ankyrin G, ßIV spectrin, and the cell-adhesion molecule neurofascin were analyzed, revealing ßIV spectrin as the most sensitive AIS protein to AKT/GSK3 pathway inhibition. Within this pathway, inhibition of AKT by triciribine has the greatest effect on ßIV spectrin localization to the AIS and its subcellular distribution within neurons, a phenotype that Support Vector Machine classification was able to accurately distinguish from control. Treatment with triciribine also resulted in increased excitability in primary hippocampal neurons. Thus, perturbations to signaling mechanisms within the AKT pathway contribute to changes in ßIV spectrin distribution and neuronal firing that may be associated with neuropsychiatric and neurodegenerative disorders.

SELECTION OF CITATIONS
SEARCH DETAIL