Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Nature ; 614(7946): 102-107, 2023 02.
Article in English | MEDLINE | ID: mdl-36697827

ABSTRACT

Living amphibians (Lissamphibia) include frogs and salamanders (Batrachia) and the limbless worm-like caecilians (Gymnophiona). The estimated Palaeozoic era gymnophionan-batrachian molecular divergence1 suggests a major gap in the record of crown lissamphibians prior to their earliest fossil occurrences in the Triassic period2-6. Recent studies find a monophyletic Batrachia within dissorophoid temnospondyls7-10, but the absence of pre-Jurassic period caecilian fossils11,12 has made their relationships to batrachians and affinities to Palaeozoic tetrapods controversial1,8,13,14. Here we report the geologically oldest stem caecilian-a crown lissamphibian from the Late Triassic epoch of Arizona, USA-extending the caecilian record by around 35 million years. These fossils illuminate the tempo and mode of early caecilian morphological and functional evolution, demonstrating a delayed acquisition of musculoskeletal features associated with fossoriality in living caecilians, including the dual jaw closure mechanism15,16, reduced orbits17 and the tentacular organ18. The provenance of these fossils suggests a Pangaean equatorial origin for caecilians, implying that living caecilian biogeography reflects conserved aspects of caecilian function and physiology19, in combination with vicariance patterns driven by plate tectonics20. These fossils reveal a combination of features that is unique to caecilians alongside features that are shared with batrachian and dissorophoid temnospondyls, providing new and compelling evidence supporting a single origin of living amphibians within dissorophoid temnospondyls.


Subject(s)
Amphibians , Anura , Fossils , Phylogeny , Urodela , Animals , Amphibians/anatomy & histology , Anura/anatomy & histology , Arizona , Urodela/anatomy & histology , Orbit/anatomy & histology , Jaw/anatomy & histology , Musculoskeletal System/anatomy & histology
2.
Nature ; 620(7974): 589-594, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587301

ABSTRACT

Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.


Subject(s)
Dinosaurs , Phylogeny , Reptiles , Animals , Beak/anatomy & histology , Dinosaurs/anatomy & histology , Dinosaurs/classification , Reptiles/anatomy & histology , Reptiles/classification , Skull/anatomy & histology , Fossils , Skeleton
3.
Nature ; 609(7926): 313-319, 2022 09.
Article in English | MEDLINE | ID: mdl-36045297

ABSTRACT

The vertebrate lineages that would shape Mesozoic and Cenozoic terrestrial ecosystems originated across Triassic Pangaea1-11. By the Late Triassic (Carnian stage, ~235 million years ago), cosmopolitan 'disaster faunas' (refs. 12-14) had given way to highly endemic assemblages12,13 on the supercontinent. Testing the tempo and mode of the establishment of this endemism is challenging-there were few geographic barriers to dispersal across Pangaea during the Late Triassic. Instead, palaeolatitudinal climate belts, and not continental boundaries, are proposed to have controlled distribution15-18. During this time of high endemism, dinosaurs began to disperse and thus offer an opportunity to test the timing and drivers of this biogeographic pattern. Increased sampling can test this prediction: if dinosaurs initially dispersed under palaeolatitudinal-driven endemism, then an assemblage similar to those of South America4,19-21 and India19,22-including the earliest dinosaurs-should be present in Carnian deposits in south-central Africa. Here we report a new Carnian assemblage from Zimbabwe that includes Africa's oldest definitive dinosaurs, including a nearly complete skeleton of the sauropodomorph Mbiresaurus raathi gen. et sp. nov. This assemblage resembles other dinosaur-bearing Carnian assemblages, suggesting that a similar vertebrate fauna ranged high-latitude austral Pangaea. The distribution of the first dinosaurs is correlated with palaeolatitude-linked climatic barriers, and dinosaurian dispersal to the rest of the supercontinent was delayed until these barriers relaxed, suggesting that climatic controls influenced the initial composition of the terrestrial faunas that persist to this day.


Subject(s)
Dinosaurs , Ecosystem , Animals , Climate , Fossils , History, Ancient , Phylogeny , Phylogeography , Population Density , Population Dynamics , Skeleton , Zimbabwe
4.
Nature ; 608(7922): 346-352, 2022 08.
Article in English | MEDLINE | ID: mdl-35896745

ABSTRACT

Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.


Subject(s)
Birds , Dinosaurs , Embryonic Development , Fossils , Pelvis , Phylogeny , Animals , Birds/anatomy & histology , Birds/classification , Birds/embryology , Dinosaurs/anatomy & histology , Dinosaurs/embryology , Imaging, Three-Dimensional , Pelvis/anatomy & histology , Pelvis/embryology
5.
Nature ; 610(7931): 313-318, 2022 10.
Article in English | MEDLINE | ID: mdl-36198797

ABSTRACT

Pterosaurs, the first vertebrates to evolve powered flight, were key components of Mesozoic terrestrial ecosystems from their sudden appearance in the Late Triassic until their demise at the end of the Cretaceous1-6. However, the origin and early evolution of pterosaurs are poorly understood owing to a substantial stratigraphic and morphological gap between these reptiles and their closest relatives6, Lagerpetidae7. Scleromochlus taylori, a tiny reptile from the early Late Triassic of Scotland discovered over a century ago, was hypothesized to be a key taxon closely related to pterosaurs8, but its poor preservation has limited previous studies and resulted in controversy over its phylogenetic position, with some even doubting its identification as an archosaur9. Here we use microcomputed tomographic scans to provide the first accurate whole-skeletal reconstruction and a revised diagnosis of Scleromochlus, revealing new anatomical details that conclusively identify it as a close pterosaur relative1 within Pterosauromorpha (the lagerpetid + pterosaur clade). Scleromochlus is anatomically more similar to lagerpetids than to pterosaurs and retains numerous features that were probably present in very early diverging members of Avemetatarsalia (bird-line archosaurs). These results support the hypothesis that the first flying reptiles evolved from tiny, probably facultatively bipedal, cursorial ancestors1.


Subject(s)
Dinosaurs , Fossils , Phylogeny , Animals , Dinosaurs/classification , Ecosystem , Models, Biological
6.
Nature ; 588(7838): 445-449, 2020 12.
Article in English | MEDLINE | ID: mdl-33299179

ABSTRACT

Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.


Subject(s)
Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Phylogeny , Animals , Calibration , Skull/anatomy & histology , Time Factors , Wings, Animal/anatomy & histology , X-Ray Microtomography
8.
Nature ; 544(7651): 484-487, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28405026

ABSTRACT

The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.


Subject(s)
Birds/classification , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Phylogeny , Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/classification , Animals , Birds/anatomy & histology , Hindlimb/anatomy & histology , Skeleton/anatomy & histology , Tanzania
9.
Proc Natl Acad Sci U S A ; 117(30): 17932-17936, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32631980

ABSTRACT

Early members of the dinosaur-pterosaur clade Ornithodira are very rare in the fossil record, obscuring our understanding of the origins of this important group. Here, we describe an early ornithodiran (Kongonaphon kely gen. et sp. nov.) from the Mid-to-Upper Triassic of Madagascar that represents one of the smallest nonavian ornithodirans. Although dinosaurs and gigantism are practically synonymous, an analysis of body size evolution in dinosaurs and other archosaurs in the context of this taxon and related forms demonstrates that the earliest-diverging members of the group may have been smaller than previously thought, and that a profound miniaturization event occurred near the base of the avian stem lineage. In phylogenetic analysis, Kongonaphon is recovered as a member of the Triassic ornithodiran clade Lagerpetidae, expanding the range of this group into Africa and providing data on the craniodental morphology of lagerpetids. The conical teeth of Kongonaphon exhibit pitted microwear consistent with a diet of hard-shelled insects, indicating a shift in trophic ecology to insectivory associated with diminutive body size. Small ancestral body size suggests that the extreme rarity of early ornithodirans in the fossil record owes more to taphonomic artifact than true reflection of the group's evolutionary history.


Subject(s)
Biological Evolution , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Animals , Madagascar , Paleontology , Phylogeny
10.
Proc Biol Sci ; 289(1984): 20220740, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36196539

ABSTRACT

Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.


Subject(s)
Dinosaurs , Femur Head , Animals , Biological Evolution , Birds , Dinosaurs/anatomy & histology , Fossils , Morphogenesis , Phylogeny
11.
J Anat ; 240(5): 867-892, 2022 05.
Article in English | MEDLINE | ID: mdl-34841511

ABSTRACT

The evolutionary history of archosaurs and their closest relatives is characterized by a wide diversity of locomotor modes, which has even been suggested as a pivotal aspect underlying the evolutionary success of dinosaurs vs. pseudosuchians across the Triassic-Jurassic transition. This locomotor diversity (e.g., more sprawling/erect; crouched/upright; quadrupedal/bipedal) led to several morphofunctional specializations of archosauriform limb bones that have been studied qualitatively as well as quantitatively through various linear morphometric studies. However, differences in locomotor habits have never been studied across the Triassic-Jurassic transition using 3D geometric morphometrics, which can relate how morphological features vary according to biological factors such as locomotor habit and body mass. Herein, we investigate morphological variation across a dataset of 72 femora from 36 different species of archosauriforms. First, we identify femoral head rotation, distal slope of the fourth trochanter, femoral curvature, and the angle between the lateral condyle and crista tibiofibularis as the main features varying between bipedal and quadrupedal taxa, all of these traits having a stronger locomotor signal than the lesser trochanter's proximal extent. We show a significant association between locomotor mode and phylogeny, but with the locomotor signal being stronger than the phylogenetic signal. This enables us to predict locomotor modes of some of the more ambiguous early archosauriforms without relying on the relationships between hindlimb and forelimb linear bone dimensions as in prior studies. Second, we highlight that the most important morphological variation is linked to the increase of body size, which impacts the width of the epiphyses and the roundness and proximodistal position of the fourth trochanter. Furthermore, we show that bipedal and quadrupedal archosauriforms have different allometric trajectories along the morphological variation in relation to body size. Finally, we demonstrate a covariation between locomotor mode and body size, with variations in femoral bowing (anteroposterior curvature) being more distinct among robust femora than gracile ones. We also identify a decoupling in fourth trochanter variation between locomotor mode (symmetrical to semi-pendant) and body size (sharp to rounded). Our results indicate a similar level of morphological disparity linked to a clear convergence in femoral robusticity between the two clades of archosauriforms (Pseudosuchia and Avemetatarsalia), emphasizing the importance of accounting for body size when studying their evolutionary history, as well as when studying the functional morphology of appendicular features. Determining how early archosauriform skeletal features were impacted by locomotor habits and body size also enables us to discuss the potential homoplasy of some phylogenetic characters used previously in cladistic analyses as well as when bipedalism evolved in the avemetatarsalian lineage. This study illuminates how the evolution of femoral morphology in early archosauriforms was functionally constrained by locomotor habit and body size, which should aid ongoing discussions about the early evolution of dinosaurs and the nature of their evolutionary "success" over pseudosuchians.


Subject(s)
Dinosaurs , Animals , Biological Evolution , Dinosaurs/anatomy & histology , Femur/anatomy & histology , Habits , Locomotion , Lower Extremity , Phylogeny
12.
J Anat ; 239(1): 184-206, 2021 07.
Article in English | MEDLINE | ID: mdl-33660262

ABSTRACT

The radiation of archosauromorph reptiles in the Triassic Period produced an unprecedented collection of diverse and disparate forms with a mix of varied ecologies and body sizes. Some of these forms were completely unique to the Triassic, whereas others were converged on by later members of Archosauromorpha. One of the most striking examples of this is with Triopticus primus, the early dome-headed form later mimicked by pachycephalosaurid dinosaurs. Here we fully describe the cranial anatomy of Triopticus primus, but also recognize a second dome-headed form from a Upper Triassic deposit in present-day India. The new taxon, Kranosaura kuttyi gen. et sp. nov., is likely the sister taxon of Triopticus primus based on the presence of a greatly expanded skull roof with a deep dorsal opening (possibly the pineal opening) through the dome, similar cranial sculpturing, and a skull table that is expanded more posterior than the posterior extent of the basioccipital. However, the dome of Kranosaura kuttyi gen. et sp. nov. extends anterodorsally, unlike that of any other archosauromorph. Histological sections and computed tomographic reconstructions through the skull of Kranosaura kuttyi gen. et sp. nov. further reveal the uniqueness of the dome of these early archosauromorphs. Moreover, our integrated analysis further demonstrates that there are many ways to create a dome in Amniota. The presence of 'dome-headed' archosauromorphs at two localities on the western and eastern portions of Pangea suggests that these archosauromorphs were widespread and are likely part of more assemblages than currently recognized.


Subject(s)
Animal Distribution , Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Skull/anatomy & histology , Animals
13.
Naturwissenschaften ; 108(4): 32, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34213630

ABSTRACT

The Placerias/Downs' Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3-4 anterior, a larger caniniform, and 1-3 "postcanine" alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus. This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa.


Subject(s)
Dinosaurs , Fossils , Animals , Arizona , Dinosaurs/anatomy & histology , Hair , Skull/anatomy & histology
14.
Biol Lett ; 15(2): 20180922, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30958136

ABSTRACT

Crown-group frogs (Anura) originated over 200 Ma according to molecular phylogenetic analyses, though only a few fossils from high latitudes chronicle the first approximately 60 Myr of frog evolution and distribution. We report fossils that represent both the first Late Triassic and the earliest equatorial record of Salientia, the group that includes stem and crown-frogs. These small fossils consist of complete and partial ilia with anteriorly directed, elongate and distally hollow iliac blades. These features of these ilia, including the lack of a prominent dorsal protuberance and a shaft that is much longer than the acetabular region, suggest a closer affinity to crown-group Anura than to Early Triassic stem anurans Triadobatrachus from Madagascar and Czatkobatrachus from Poland, both high-latitude records. The new fossils demonstrate that crown anurans may have been present in the Late Triassic equatorial region of Pangea. Furthermore, the presence of Early Jurassic anurans in the same stratigraphic sequence ( Prosalirus bitis from the Kayenta Formation) suggests that anurans survived the climatic aridification of this region in the early Mesozoic. These fossils highlight the importance of the targeted collection of microfossils and provide further evidence for the presence of crown-group representatives of terrestrial vertebrates prior to the end-Triassic extinction.


Subject(s)
Dinosaurs , Animals , Anura , Arizona , Biological Evolution , Fossils , Madagascar , Phylogeny
15.
Proc Natl Acad Sci U S A ; 113(51): 14757-14762, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27930315

ABSTRACT

Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.


Subject(s)
Birds/physiology , Dinosaurs/physiology , Genetic Variation , Reptiles/physiology , Animals , Biological Evolution , Birds/anatomy & histology , Body Size , Dinosaurs/anatomy & histology , Fossils , Phylogeny , Polymorphism, Genetic , Reptiles/anatomy & histology , Species Specificity
16.
J Anat ; 232(1): 80-104, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29114853

ABSTRACT

The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not proceed in a neat, stepwise fashion, but was characterized by multiple losses and possible gains of carpals, metacarpals and phalanges. Taken together, the high degree of intra- and interspecific variability in the number and identities of carpals, and the state of reduction of the fourth and fifth digits suggest the presence of a 'zone of developmental variability' in early dinosaur manus evolution, from which novel avian-like morphologies eventually emerged and became channelized among later theropod clades.


Subject(s)
Biological Evolution , Dinosaurs/anatomy & histology , Forelimb/anatomy & histology , Metacarpal Bones/anatomy & histology , Animals , Fossils , Phylogeny , Species Specificity
17.
Cladistics ; 34(3): 333-335, 2018 Jun.
Article in English | MEDLINE | ID: mdl-34645074

ABSTRACT

Simões et al. () argued that large matrices are linked to the construction of "problematic" characters, and that those characters negatively affect tree topology. In their re-evaluation of two squamate datasets, however, Simões et al. () simply eliminated what they termed "problematic" characters, rather than recode them. This practice ignores potential sources of phylogenetic information and, if it were to be more widely followed, would inhibit the advancement of the field of systematics. Here, we defend the necessity and inevitability of large morphological (phenomic) datasets and discuss best practices for morphological data collection in contemporary phylogenetics.

18.
Proc Natl Acad Sci U S A ; 112(26): 7909-13, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26080428

ABSTRACT

A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.


Subject(s)
Dinosaurs , Ecosystem , Tropical Climate , Animals , Carbon Isotopes/analysis , Fires , Hot Temperature
19.
Naturwissenschaften ; 103(11-12): 95, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27830290

ABSTRACT

Reptiles have a long history of transitioning from terrestrial to semi-aquatic or aquatic environments that stretches back at least 250 million years. Within Archosauria, both living crocodylians and birds have semi-aquatic members. Closer to the root of Archosauria and within the closest relatives of the clade, there is a growing body of evidence that early members of those clades had a semi-aquatic lifestyle. However, the morphological adaptations to a semi-aquatic environment remain equivocal in most cases. Here, we introduce a new Middle Triassic (245-235 Ma) archosauriform, Litorosuchus somnii, gen. et sp. nov., based on a nearly complete skeleton from the Zhuganpo Member (Ladinian [241-235 Ma]) of the Falang Formation, Yunnan, China. Our phylogenetic analyses suggest that Litorosuchus is a stem archosaur closely related to the aberrant Vancleavea just outside of Archosauria. The well-preserved skeleton of L. somnii bears a number of morphological characters consistent with other aquatic-adapted tetrapods including: a dorsally directed external naris, tall neural spines and elongate chevrons in an elongated tail, a short and broad scapula, webbed feet, long cervical vertebrae with long slender ribs, and an elongated rostrum with long and pointed teeth. Together these features represent one of the best-supported cases of a semi-aquatic mode of life for a stem archosaur. Together with Vancleavea campi, the discovery of L. somnii demonstrates a growing body of evidence that there was much more diversity in mode of life outside Archosauria. Furthermore, L. somnii helps interpret other possible character states consistent with a semi-aquatic mode of life for archosauriforms, including archosaurs.


Subject(s)
Aquatic Organisms/classification , Fossils , Phylogeny , Reptiles/anatomy & histology , Reptiles/classification , Adaptation, Physiological , Animals , Biodiversity , China , Species Specificity
20.
Nature ; 464(7285): 95-8, 2010 Mar 04.
Article in English | MEDLINE | ID: mdl-20203608

ABSTRACT

The early evolutionary history of Ornithodira (avian-line archosaurs) has hitherto been documented by incomplete (Lagerpeton) or unusually specialized forms (pterosaurs and Silesaurus). Recently, a variety of Silesaurus-like taxa have been reported from the Triassic period of both Gondwana and Laurasia, but their relationships to each other and to dinosaurs remain a subject of debate. Here we report on a new avian-line archosaur from the early Middle Triassic (Anisian) of Tanzania. Phylogenetic analysis places Asilisaurus kongwe gen. et sp. nov. as an avian-line archosaur and a member of the Silesauridae, which is here considered the sister taxon to Dinosauria. Silesaurids were diverse and had a wide distribution by the Late Triassic, with a novel ornithodiran bauplan including leaf-shaped teeth, a beak-like lower jaw, long, gracile limbs, and a quadrupedal stance. Our analysis suggests that the dentition and diet of silesaurids, ornithischians and sauropodomorphs evolved independently from a plesiomorphic carnivorous form. As the oldest avian-line archosaur, Asilisaurus demonstrates the antiquity of both Ornithodira and the dinosaurian lineage. The initial diversification of Archosauria, previously documented by crocodilian-line archosaurs in the Anisian, can now be shown to include a contemporaneous avian-line radiation. The unparalleled taxonomic diversity of the Manda archosaur assemblage indicates that archosaur diversification was well underway by the Middle Triassic or earlier.


Subject(s)
Birds/anatomy & histology , Birds/classification , Fossils , Phylogeny , Reptiles/anatomy & histology , Reptiles/classification , Skeleton , Animals , Beak/anatomy & histology , Biological Evolution , Diet/veterinary , Dinosaurs/anatomy & histology , Dinosaurs/classification , Extremities/anatomy & histology , Geography , Jaw/anatomy & histology , Tanzania , Tooth/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL