Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Med Genet A ; 182(1): 93-103, 2020 01.
Article in English | MEDLINE | ID: mdl-31622028

ABSTRACT

White matter (WM) signal abnormalities are demonstrated in various neurodevelopmental disorders on brain magnetic resonance imaging (MRI). The pattern of WM abnormalities can aid in the diagnostic process. This study aims to characterize the WM changes found in microdeletion/microduplication syndromes. Thirteen patients with neurodevelopmental disorders due to copy number variations were collected from a cohort of children with evidence of WM abnormalities on brain MRI, in two medical centers. A pediatric neuroradiologist blindly interpreted the MRI scans. Clinical and genetic findings were retrospectively extracted from the medical records. WM changes included: multifocal (10/13) periventricular (12/13) and subcortical (5/13) signal abnormalities and WM volume loss (6/13). Dysgenesis of the corpus callosum was depicted in 12/13. The main clinical features were: global developmental delay (13/13), hypotonia (11/13), epilepsy (10/13), dysmorphic features (9/13), microcephaly (6/13), short stature (6/13), and systemic involvement (6/13). We showed that different chromosomal micro-rearrangement syndromes share similar MRI patterns of nonspecific multifocal predominantly periventricular WM changes associated with corpus callosum dysgenesis with or without WM and gray matter loss. Hence, the association of these features in a patient evaluated for global developmental delay/intellectual disability suggests a chromosomal micro-rearrangement syndrome, and a chromosomal microarray analysis should be performed.


Subject(s)
Brain/metabolism , Chromosomes/genetics , DNA Copy Number Variations/genetics , Leukoencephalopathies/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adolescent , Agenesis of Corpus Callosum/diagnostic imaging , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Body Dysmorphic Disorders/diagnostic imaging , Body Dysmorphic Disorders/genetics , Body Dysmorphic Disorders/pathology , Brain/diagnostic imaging , Brain/pathology , Cataract/congenital , Cataract/diagnostic imaging , Cataract/genetics , Cataract/pathology , Child , Cohort Studies , Cornea/abnormalities , Cornea/diagnostic imaging , Cornea/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/metabolism , Corpus Callosum/pathology , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Epilepsy/diagnostic imaging , Epilepsy/genetics , Epilepsy/pathology , Female , Genetic Predisposition to Disease , Humans , Hypogonadism/diagnostic imaging , Hypogonadism/genetics , Hypogonadism/pathology , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Intellectual Disability/pathology , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/pathology , Magnetic Resonance Imaging , Male , Microcephaly/diagnostic imaging , Microcephaly/genetics , Microcephaly/pathology , Muscle Hypotonia/diagnostic imaging , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Optic Atrophy/diagnostic imaging
2.
Insect Biochem Mol Biol ; 38(3): 320-30, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18252246

ABSTRACT

Male-derived accessory gland proteins (Acps) are transferred to the female reproductive tract during mating and affect female reproductive maturation and behavior. Some Acps subsequently enter the female hemolymph. We hypothesized that humoral proteases are the primary effectors of Acp bioactivity by processing (activating) and/or degrading them. To test this hypothesis we examined the fate of one Acp, Drosophila melanogaster Sex Peptide (Acp70A, DrmSP), which possesses several putative serine-protease cleavage sites, in hemolymph of unmated and mated females. In D. melanogaster, DrmSP induces post-mating non-receptivity and enhances oogenesis. To determine if serine proteases regulate the duration of DrmSP activity in mated females, we performed kinetic analysis of cleavage of a synthetic N-terminal truncated DrmSP(8-36) (T-SP) with hemolymph of unmated versus mated females. We found that T-SP is cleaved more rapidly and completely in mated female hemolymph. Using LC-MS/MS analyses, we identified its primary cleavage sites, indicating that trypsin was the major endopeptidase regulating T-SP in hemolymph. This was verified in vitro by utilizing specific chromogenic serine-protease substrates and inhibitors. We propose that post-mating cleavage of DrmSP in the female hemolymph regulates the duration of the rapidly induced post-mating responses in D. melanogaster and that this is a specific example of Acp bioactivity regulated by hemolymph serine proteases.


Subject(s)
Drosophila Proteins/blood , Hemolymph/metabolism , Oogenesis/physiology , Trypsin/blood , Animals , Drosophila melanogaster , Female , Male , Sexual Behavior, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL