Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Crit Rev Food Sci Nutr ; 64(20): 7067-7084, 2024.
Article in English | MEDLINE | ID: mdl-38975869

ABSTRACT

Multiple beneficial effects have been attributed to green tea catechins (GTCs). However, the bioavailability of GTCs is generally low, with only a small portion directly absorbed in the small intestine. The majority of ingested GTCs reaches the large intestinal lumen, and are extensively degraded via biotransformation by gut microbiota, forming many low-molecular-weight metabolites such as phenyl-γ-valerolactones, phenolic acids, butyrate, and acetate. This process not only improves the overall bioavailability of GTC-derived metabolites but also enriches the biological activities of GTCs. Therefore, the intra- and inter-individual differences in human gut microbiota as well as the resulting biological contribution of microbial metabolites are crucial for the ultimate health benefits. In this review, the microbial degradation of major GTCs was characterized and an overview of the in vitro models used for GTC metabolism was summarized. The intra- and inter-individual differences of human gut microbiota composition and the resulting divergence in the metabolic patterns of GTCs were highlighted. Moreover, the potential beneficial effects of GTCs and their gut microbial metabolites were also discussed. Overall, the microbial metabolites of GTCs with higher bioavailability and bioactive potency are key factors for the observed beneficial effects of GTCs and green tea consumption.


Subject(s)
Biological Availability , Catechin , Gastrointestinal Microbiome , Tea , Gastrointestinal Microbiome/physiology , Humans , Tea/chemistry , Catechin/metabolism
2.
Curr Protoc ; 4(6): e1071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896109

ABSTRACT

Techno-functional properties of protein isolates such as emulsification, foaming, and gelling serve as key indicators to determine their food applications. Conventional macro-volume techniques used to measure these techno-functional properties are usually time consuming, require large amounts of protein samples, and are impractical when diverse protein samples are handled at the early screening stage. To overcome these issues, we have developed scaled-down (miniaturized) assays to test techno-functional properties of protein samples. These assays are simple, efficient, and require <400 µl of protein solution. Specifically, the miniaturized emulsification and gelling assays require 25-fold less protein than conventional macro-volume techniques and the miniaturized foaming assay requires 100-fold less sample. The performance of these assays has been thoroughly validated using conventional techno-functional tests for each parameter. The protocols described herein offer high-throughput screening capabilities, accelerating the testing process for protein techno-functional properties and allowing for quick identification of samples of interest from diverse samples. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Miniaturized emulsification assay Alternate Protocol 1: Conventional macro-volume emulsification assay Basic Protocol 2: Miniaturized foaming assay Alternate Protocol 2: Conventional macro-volume foaming assay Basic Protocol 3: Miniaturized gelling assay Alternate Protocol 3: Conventional macro-volume gelling assay.


Subject(s)
Emulsions , Proteins , Proteins/analysis , Proteins/chemistry , Emulsions/chemistry , Miniaturization , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation
3.
Biomolecules ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672502

ABSTRACT

In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Gene Editing/methods , Acidaminococcus/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Multigene Family , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Genome, Bacterial
4.
Nutrients ; 16(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125445

ABSTRACT

Researchers are increasingly interested in discovering new pancreatic lipase inhibitors as anti-obesity ingredients. Medicine-and-food homology plants contain a diverse set of natural bioactive compounds with promising development potential. This study screened and identified potent pancreatic lipase inhibitors from 20 commonly consumed medicine-and-food homology plants using affinity ultrafiltration combined with spectroscopy and docking simulations. The results showed that turmeric exhibited the highest pancreatic lipase-inhibitory activity, and curcumin, demethoxycurcumin, and bisdemethoxycurcumin were discovered to be potent pancreatic lipase inhibitors within the turmeric extract, with IC50 values of 0.52 ± 0.04, 1.12 ± 0.05, and 3.30 ± 0.08 mg/mL, respectively. In addition, the enzymatic kinetics analyses demonstrated that the inhibition type of the three curcuminoids was the reversible competitive model, and curcumin exhibited a higher binding affinity and greater impact on the secondary structure of pancreatic lipase than found with demethoxycurcumin or bisdemethoxycurcumin, as observed through fluorescence spectroscopy and circular dichroism. Furthermore, docking simulations supported the above experimental findings, and revealed that the three curcuminoids might interact with amino acid residues in the binding pocket of pancreatic lipase through non-covalent actions, such as hydrogen bonding and π-π stacking, thereby inhibiting the pancreatic lipase. Collectively, these findings suggest that the bioactive compounds of turmeric, in particular curcumin, can be promising dietary pancreatic lipase inhibitors for the prevention and management of obesity.


Subject(s)
Curcuma , Curcumin , Diarylheptanoids , Enzyme Inhibitors , Lipase , Molecular Docking Simulation , Pancreas , Lipase/antagonists & inhibitors , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Curcuma/chemistry , Diarylheptanoids/pharmacology , Pancreas/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Plants, Medicinal/chemistry
5.
Commun Biol ; 7(1): 50, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184720

ABSTRACT

Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature's chemical repertoire.


Subject(s)
Actinobacteria , Biological Products , Actinomyces , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL