Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell ; 187(16): 4336-4354.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121847

ABSTRACT

Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Lymphocyte Activation Gene 3 Protein , NK Cell Lectin-Like Receptor Subfamily D , Programmed Cell Death 1 Receptor , Animals , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Programmed Cell Death 1 Receptor/metabolism , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Mice, Inbred C57BL , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Cytotoxicity, Immunologic , Cell Proliferation , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology
2.
Cell ; 187(16): 4355-4372.e22, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121848

ABSTRACT

Overcoming immune-mediated resistance to PD-1 blockade remains a major clinical challenge. Enhanced efficacy has been demonstrated in melanoma patients with combined nivolumab (anti-PD-1) and relatlimab (anti-LAG-3) treatment, the first in its class to be FDA approved. However, how these two inhibitory receptors synergize to hinder anti-tumor immunity remains unknown. Here, we show that CD8+ T cells deficient in both PD-1 and LAG-3, in contrast to CD8+ T cells lacking either receptor, mediate enhanced tumor clearance and long-term survival in mouse models of melanoma. PD-1- and LAG-3-deficient CD8+ T cells were transcriptionally distinct, with broad TCR clonality and enrichment of effector-like and interferon-responsive genes, resulting in enhanced IFN-γ release indicative of functionality. LAG-3 and PD-1 combined to drive T cell exhaustion, playing a dominant role in modulating TOX expression. Mechanistically, autocrine, cell-intrinsic IFN-γ signaling was required for PD-1- and LAG-3-deficient CD8+ T cells to enhance anti-tumor immunity, providing insight into how combinatorial targeting of LAG-3 and PD-1 enhances efficacy.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Interferon-gamma , Lymphocyte Activation Gene 3 Protein , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Interferon-gamma/metabolism , Mice , Antigens, CD/metabolism , Autocrine Communication , Humans , Melanoma/immunology , Melanoma/drug therapy , Female , Cell Line, Tumor , Melanoma, Experimental/immunology , T-Cell Exhaustion
3.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37848036

ABSTRACT

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Subject(s)
Post-Acute COVID-19 Syndrome , Serotonin , Humans , COVID-19/complications , Disease Progression , Inflammation , Post-Acute COVID-19 Syndrome/blood , Post-Acute COVID-19 Syndrome/pathology , Serotonin/blood , Virus Diseases
4.
Cell ; 184(5): 1262-1280.e22, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636129

ABSTRACT

Improving effector activity of antigen-specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (TEFF)-driving transcription factors (TFs), the transcriptional coordination of TEFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced TEFF responses without compromising memory or exhaustion precursors. Fli1 restrained TEFF lineage differentiation by binding to cis-regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs, allowing more efficient Runx3-driven TEFF biology. CD8+ T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8+ T cell transcriptional landscape from excessive ETS:RUNX-driven TEFF cell differentiation. Moreover, genetic deletion of Fli1 improves TEFF differentiation and protective immunity in infections and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Proto-Oncogene Protein c-fli-1/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CRISPR-Cas Systems , Cell Differentiation , Chronic Disease , Core Binding Factor Alpha 3 Subunit/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Infections/immunology , Mice , Neoplasms/immunology
5.
Nat Immunol ; 23(11): 1600-1613, 2022 11.
Article in English | MEDLINE | ID: mdl-36271148

ABSTRACT

Naïve CD8+ T cells can differentiate into effector (Teff), memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff, Tmem and Tex populations remain poorly understood. Here, we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets, including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2, as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator, Btg1, in establishing the Tex population. Finally, these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocytic Choriomeningitis , Humans , CD8-Positive T-Lymphocytes/metabolism , Transcriptome , Lymphocytic choriomeningitis virus , Epigenesis, Genetic , Chromatin/genetics , Chromatin/metabolism , Lymphocytic Choriomeningitis/metabolism
6.
Immunity ; 56(12): 2699-2718.e11, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091951

ABSTRACT

Rewiring exhausted CD8+ T (Tex) cells toward functional states remains a therapeutic challenge. Tex cells are epigenetically programmed by the transcription factor Tox. However, epigenetic remodeling occurs as Tex cells transition from progenitor (Texprog) to intermediate (Texint) and terminal (Texterm) subsets, suggesting development flexibility. We examined epigenetic transitions between Tex cell subsets and revealed a reciprocally antagonistic circuit between Stat5a and Tox. Stat5 directed Texint cell formation and re-instigated partial effector biology during this Texprog-to-Texint cell transition. Constitutive Stat5a activity antagonized Tox and rewired CD8+ T cells from exhaustion to a durable effector and/or natural killer (NK)-like state with superior anti-tumor potential. Temporal induction of Stat5 activity in Tex cells using an orthogonal IL-2:IL2Rß-pair fostered Texint cell accumulation, particularly upon PD-L1 blockade. Re-engaging Stat5 also partially reprogrammed the epigenetic landscape of exhaustion and restored polyfunctionality. These data highlight therapeutic opportunities of manipulating the IL-2-Stat5 axis to rewire Tex cells toward more durably protective states.


Subject(s)
CD8-Positive T-Lymphocytes , Transcription Factors , Transcription Factors/genetics , Interleukin-2 , Gene Expression Regulation , Programmed Cell Death 1 Receptor/metabolism
7.
Immunity ; 56(6): 1320-1340.e10, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315535

ABSTRACT

CD8+ T cell exhaustion (Tex) limits disease control during chronic viral infections and cancer. Here, we investigated the epigenetic factors mediating major chromatin-remodeling events in Tex-cell development. A protein-domain-focused in vivo CRISPR screen identified distinct functions for two versions of the SWI/SNF chromatin-remodeling complex in Tex-cell differentiation. Depletion of the canonical SWI/SNF form, BAF, impaired initial CD8+ T cell responses in acute and chronic infection. In contrast, disruption of PBAF enhanced Tex-cell proliferation and survival. Mechanistically, PBAF regulated the epigenetic and transcriptional transition from TCF-1+ progenitor Tex cells to more differentiated TCF-1- Tex subsets. Whereas PBAF acted to preserve Tex progenitor biology, BAF was required to generate effector-like Tex cells, suggesting that the balance of these factors coordinates Tex-cell subset differentiation. Targeting PBAF improved tumor control both alone and in combination with anti-PD-L1 immunotherapy. Thus, PBAF may present a therapeutic target in cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Chromatin Assembly and Disassembly , Chromatin , Cell Differentiation , Epigenesis, Genetic
9.
Immunity ; 54(10): 2209-2217.e6, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34551314

ABSTRACT

CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Lineage/immunology , Gene Editing/methods , Integrases/genetics , Alleles , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line , Mice
10.
Nat Immunol ; 18(9): 1004-1015, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28759001

ABSTRACT

Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-ß-signaling-dependent conversion of NK cells (CD49a-CD49b+Eomes+) into intermediate type 1 innate lymphoid cell (intILC1) (CD49a+CD49b+Eomes+) populations and ILC1 (CD49a+CD49b-Eomesint) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance. Experiments with an antibody that neutralizes the cytokine TNF suggested that escape from the innate immune system was partially mediated by TNF-producing ILC1s. Our findings provide new insight into the plasticity of group 1 ILCs in the tumor microenvironment and suggest that the TGF-ß-driven conversion of NK cells into ILC1s is a previously unknown mechanism by which tumors escape surveillance by the innate immune system.


Subject(s)
Cellular Reprogramming/immunology , Fibrosarcoma/immunology , Gastrointestinal Neoplasms/immunology , Gastrointestinal Stromal Tumors/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Neoplasms, Experimental/immunology , Tumor Escape/immunology , Animals , Case-Control Studies , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression Profiling , Humans , Killer Cells, Natural/cytology , Lymphocytes/cytology , Lymphocytes/immunology , Mice , Sequence Analysis, RNA , Signal Transduction , Transforming Growth Factor beta/immunology
11.
Immunity ; 52(5): 825-841.e8, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32396847

ABSTRACT

CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epigenesis, Genetic/immunology , Neoplasms/immunology , T-Lymphocyte Subsets/immunology , Transcription, Genetic/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Epigenesis, Genetic/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Humans , Immunotherapy/methods , Mice, Inbred C57BL , Neoplasms/genetics , Neoplasms/therapy , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Lymphocyte Subsets/metabolism , Transcription, Genetic/genetics
12.
Immunity ; 51(5): 840-855.e5, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31606264

ABSTRACT

TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Gene Regulatory Networks , T Cell Transcription Factor 1/metabolism , Transcription, Genetic , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Chronic Disease , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Mice , Programmed Cell Death 1 Receptor/metabolism , T Cell Transcription Factor 1/genetics , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/virology
13.
Nature ; 571(7764): 211-218, 2019 07.
Article in English | MEDLINE | ID: mdl-31207603

ABSTRACT

Exhausted CD8+ T (Tex) cells in chronic infections and cancer have limited effector function, high co-expression of inhibitory receptors and extensive transcriptional changes compared with effector (Teff) or memory (Tmem) CD8+ T cells. Tex cells are important clinical targets of checkpoint blockade and other immunotherapies. Epigenetically, Tex cells are a distinct immune subset, with a unique chromatin landscape compared with Teff and Tmem cells. However, the mechanisms that govern the transcriptional and epigenetic development of Tex cells remain unknown. Here we identify the HMG-box transcription factor TOX as a central regulator of Tex cells in mice. TOX is largely dispensable for the formation of Teff and Tmem cells, but it is critical for exhaustion: in the absence of TOX, Tex cells do not form. TOX is induced by calcineurin and NFAT2, and operates in a feed-forward loop in which it becomes calcineurin-independent and sustained in Tex cells. Robust expression of TOX therefore results in commitment to Tex cells by translating persistent stimulation into a distinct Tex cell transcriptional and epigenetic developmental program.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Epistasis, Genetic , Homeodomain Proteins/metabolism , Transcription, Genetic , Animals , Calcineurin/metabolism , Calcium Signaling , Feedback, Physiological , Female , Gene Expression Regulation/immunology , Genotype , Immunologic Memory , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Tumor Escape
14.
Proc Natl Acad Sci U S A ; 119(17): e2106083119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35446623

ABSTRACT

CD8 T cells mediate protection against intracellular pathogens and tumors. However, persistent antigen during chronic infections or cancer leads to T cell exhaustion, suboptimal functionality, and reduced protective capacity. Despite considerable work interrogating the transcriptional regulation of exhausted CD8 T cells (TEX), the posttranscriptional control of TEX remains poorly understood. Here, we interrogated the role of microRNAs (miRs) in CD8 T cells responding to acutely resolved or chronic viral infection and identified miR-29a as a key regulator of TEX. Enforced expression of miR-29a improved CD8 T cell responses during chronic viral infection and antagonized exhaustion. miR-29a inhibited exhaustion-driving transcriptional pathways, including inflammatory and T cell receptor signaling, and regulated ribosomal biogenesis. As a result, miR-29a fostered a memory-like CD8 T cell differentiation state during chronic infection. Thus, we identify miR-29a as a key regulator of TEX and define mechanisms by which miR-29a can divert exhaustion toward a more beneficial memory-like CD8 T cell differentiation state.


Subject(s)
MicroRNAs , Neoplasms , CD8-Positive T-Lymphocytes , Humans , Immunotherapy/methods , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/metabolism , Persistent Infection
15.
Immunity ; 51(4): 591-592, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618646

Subject(s)
Gene Targeting , Integrases
16.
Proc Natl Acad Sci U S A ; 114(27): 7077-7082, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28630300

ABSTRACT

G9a is an epigenetic regulator that methylates H3K9, generally causing repression of gene expression, and participates in diverse cellular functions. G9a is genetically deregulated in a variety of tumor types and can silence tumor suppressor genes and, therefore, is important for carcinogenesis. Although hypoxia is recognized to be an adverse factor in tumor growth and metastasis, the role of G9a in regulating gene expression in hypoxia has not been described extensively. Here, we show that G9a protein stability is increased in hypoxia via reduced proline hydroxylation and, hence, inefficient degradation by the proteasome. This inefficiency leads to an increase in H3K9me2 at its target promoters. Blocking the methyltransferase activity of G9a inhibited cellular proliferation and migration in vitro and tumor growth in vivo. Furthermore, an increased level of G9a is a crucial factor in mediating the hypoxic response by down-regulating the expression of specific genes, including ARNTL, CEACAM7, GATA2, HHEX, KLRG1, and OGN This down-regulation can be rescued by a small molecule inhibitor of G9a. Based on the hypothesis that the changes in gene expression would influence patient outcomes, we have developed a prognostic G9a-suppressed gene signature that can stratify breast cancer patients. Together, our findings provide an insight into the role G9a plays as an epigenetic mediator of hypoxic response, which can be used as a diagnostic marker, and proposes G9a as a therapeutic target for solid cancers.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Hypoxia/genetics , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Disease-Free Survival , Epigenesis, Genetic , Female , Gene Expression Profiling , Humans , MCF-7 Cells , Mammary Neoplasms, Experimental/genetics , Mice , Mice, Inbred C57BL , Prognosis , Proline/chemistry , Protein Processing, Post-Translational , RNA, Small Interfering/metabolism , Recurrence , Tumor Microenvironment
17.
Trends Immunol ; 34(11): 548-55, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23954142

ABSTRACT

Interleukin (IL)-12 and IL-23 share the IL-12p40 molecule. IL-12 promotes T helper (Th)1 immunity and IL-23 promotes Th17 immunity, and it has recently become apparent that the balance between IL-12 and IL-23 is important in carcinogenesis. A series of studies demonstrated that, where tumor initiation, growth, and metastasis are concerned, IL-12 may act independently of interferon (IFN)-γ, and IL-23 independently of IL-17A. This review explores the activity of IL-23 in carcinogenesis. In the context of the tumor-inhibitory effects of IL-12, and tumor-promoting effects of IL-23, we discuss the use of anti-IL-12p/23 monoclonal antibodies (mAbs) in autoimmune inflammatory disorders and the alternative specific neutralization of IL-23.


Subject(s)
Carcinogenesis/immunology , Interleukin-12/immunology , Interleukin-23/immunology , Neoplasms/immunology , Neoplasms/pathology , Animals , Antibodies, Monoclonal/immunology , Autoimmune Diseases/immunology , Humans
18.
Proc Natl Acad Sci U S A ; 108(17): 7142-7, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21482773

ABSTRACT

Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor-2 (HER2/ErbB-2), has become the mainstay of treatment for HER2-positive breast cancer. Nevertheless, its exact mechanism of action has not been fully elucidated. Although several studies suggest that Fc receptor-expressing immune cells are involved in trastuzumab therapy, the relative contribution of lymphocyte-mediated cellular cytotoxicity and antitumor cytokines remains unknown. We report here that anti-ErbB-2 mAb therapy is dependent on the release of type I and type II IFNs but is independent of perforin or FasL. Our study thus challenges the notion that classical antibody-dependent, lymphocyte-mediated cellular cytotoxicity is important for trastuzumab. We demonstrate that anti-ErbB-2 mAb therapy of experimental tumors derived from MMTV-ErbB-2 transgenic mice triggers MyD88-dependent signaling and primes IFN-γ-producing CD8+ T cells. Adoptive cell transfer of purified T cell subsets confirmed the essential role of IFN-γ-producing CD8+ T cells. Notably, anti-ErbB-2 mAb therapy was independent of IL-1R or IL-17Ra signaling. Finally, we investigated whether immunostimulatory approaches with antibodies against programmed death-1 (PD-1) or 41BB (CD137) could be used to capitalize on the immune-mediated effects of trastuzumab. We demonstrate that anti-PD-1 or anti-CD137 mAb can significantly improve the therapeutic activity of anti-ErbB-2 mAb in immunocompetent mice.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigens, Surface , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis Regulatory Proteins , Interferon Type I/immunology , Interferon-gamma/immunology , Mammary Neoplasms, Animal/drug therapy , Receptor, ErbB-2/immunology , Receptors, Interleukin-1 Type I/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Adoptive Transfer , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cell Line, Tumor , Humans , Interferon Type I/genetics , Interferon-gamma/genetics , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/immunology , Mice , Mice, Inbred BALB C , Mice, SCID , Mice, Transgenic , Programmed Cell Death 1 Receptor , Receptor, ErbB-2/genetics , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/immunology , Trastuzumab , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
19.
Science ; 384(6702): eadf1329, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900877

ABSTRACT

Persistent inflammation driven by cytokines such as type-one interferon (IFN-I) can cause immunosuppression. We show that administration of the Janus kinase 1 (JAK1) inhibitor itacitinib after anti-PD-1 (programmed cell death protein 1) immunotherapy improves immune function and antitumor responses in mice and results in high response rates (67%) in a phase 2 clinical trial for metastatic non-small cell lung cancer. Patients who failed to respond to initial anti-PD-1 immunotherapy but responded after addition of itacitinib had multiple features of poor immune function to anti-PD-1 alone that improved after JAK inhibition. Itacitinib promoted CD8 T cell plasticity and therapeutic responses of exhausted and effector memory-like T cell clonotypes. Patients with persistent inflammation refractory to itacitinib showed progressive CD8 T cell terminal differentiation and progressive disease. Thus, JAK inhibition may improve the efficacy of anti-PD-1 immunotherapy by pivoting T cell differentiation dynamics.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Janus Kinase 1 , Janus Kinase Inhibitors , Lung Neoplasms , Programmed Cell Death 1 Receptor , Animals , Female , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors
20.
Proc Natl Acad Sci U S A ; 107(18): 8328-33, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20404142

ABSTRACT

IL-23 is an important molecular driver of Th17 cells and has strong tumor-promoting proinflammatory activity postulated to occur via adaptive immunity. Conversely, more recently it has been reported that IL-17A elicits a protective inflammation that promotes the activation of tumor-specific CD8(+) T cells. Here we show the much broader impact of IL-23 in antagonizing antitumor immune responses primarily mediated by innate immunity. Furthermore, the majority of this impact was independent of IL-17A, which did not appear critical for many host responses to tumor initiation or metastases. IL-23-deficient mice were resistant to experimental tumor metastases in three models where host NK cells controlled disease. Immunotherapy with IL-2 was more effective in mice lacking IL-23, and again the protection afforded was NK cell mediated and independent of IL-17A. Further investigation revealed that loss of IL-23 promoted perforin and IFN-gamma antitumor effector function in both metastasis models examined. IL-23-deficiency also strikingly protected mice from tumor formation in two distinct mouse models of carcinogenesis where the dependence on host IL-12p40 and IL-17A was quite different. Notably, in the 3'-methylcholanthrene (MCA) induction of fibrosarcoma model, this protection was completely lost in the absence of NK cells. Overall, these data indicate the general role that IL-23 plays in suppressing natural or cytokine-induced innate immunity, promoting tumor development and metastases independently of IL-17A.


Subject(s)
Immunity, Innate , Interleukin-17/immunology , Interleukin-23 Subunit p19/immunology , Myocardium/immunology , Neoplasms/immunology , Neoplasms/pathology , Animals , Cell Line, Tumor , Female , Immunotherapy , Interferon-gamma/immunology , Interleukin-2/immunology , Interleukin-23 Subunit p19/deficiency , Killer Cells, Natural/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Metastasis , Perforin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL