Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 178(4): 835-849.e21, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31327527

ABSTRACT

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.


Subject(s)
Brain Neoplasms/genetics , Cell Plasticity/genetics , Glioblastoma/genetics , Adolescent , Aged , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Lineage/genetics , Child , Cohort Studies , Disease Models, Animal , Female , Genetic Heterogeneity , Glioblastoma/pathology , Heterografts , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Middle Aged , Mutation , RNA-Seq , Single-Cell Analysis/methods , Tumor Microenvironment/genetics
2.
Mol Cell ; 78(6): 1096-1113.e8, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32416067

ABSTRACT

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.


Subject(s)
Drug Resistance, Neoplasm/genetics , Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred NOD , Nuclear Proteins/metabolism , Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Triazoles/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
3.
Genes Dev ; 33(23-24): 1718-1738, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31727771

ABSTRACT

More than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene RB1 The canonical function of the RB1 gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes. To test the role of KDM5A in SCLC tumorigenesis in vivo, we developed a CRISPR/Cas9-based mouse model of SCLC by delivering an adenovirus (or an adeno-associated virus [AAV]) that expresses Cre recombinase and sgRNAs targeting Rb1, Tp53, and Rbl2 into the lungs of Lox-Stop-Lox Cas9 mice. Coinclusion of a KDM5A sgRNA decreased SCLC tumorigenesis and metastasis, and the SCLCs that formed despite the absence of KDM5A had higher NOTCH activity compared to KDM5A+/+ SCLCs. This work establishes a role for KDM5A in SCLC tumorigenesis and suggests that KDM5 inhibitors should be explored as treatments for SCLC.


Subject(s)
Cell Differentiation/genetics , Neuroendocrine Cells/cytology , Receptors, Notch/physiology , Retinoblastoma-Binding Protein 2/metabolism , Signal Transduction/genetics , Small Cell Lung Carcinoma/enzymology , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Line , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Histone Demethylases/metabolism , Humans , In Vitro Techniques , Mice , Neuroendocrine Cells/pathology , Small Cell Lung Carcinoma/physiopathology
4.
Mol Cancer ; 23(1): 56, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38491381

ABSTRACT

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Subject(s)
Carbonic Anhydrases , Carcinoma, Renal Cell , Kidney Neoplasms , Receptors, Chimeric Antigen , Animals , Mice , Humans , Carbonic Anhydrase IX/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , Receptors, Chimeric Antigen/genetics , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/therapeutic use , Antigens, Neoplasm , Antibodies , T-Lymphocytes/metabolism
5.
Proc Natl Acad Sci U S A ; 115(16): E3741-E3748, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610306

ABSTRACT

Inactivation of the retinoblastoma gene (RB1) product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function RB1 mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline Rbp2 deletion significantly impedes tumorigenesis in Rb1+/- mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing Rb1+/- mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established Rb1-null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by RB1 inactivation.


Subject(s)
DNA-Binding Proteins/physiology , Histone Code/physiology , Jumonji Domain-Containing Histone Demethylases/physiology , Molecular Targeted Therapy/methods , Neoplasm Proteins/physiology , Pituitary Neoplasms/enzymology , Retinoblastoma Protein/deficiency , Thyroid Neoplasms/enzymology , Alleles , Animals , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Echocardiography , Enzyme Activation/drug effects , Fibroblasts , Genes, Retinoblastoma , Heart Septal Defects/genetics , Histone Code/drug effects , Integrases/drug effects , Jumonji Domain-Containing Histone Demethylases/deficiency , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Mice, Inbred C57BL , Pituitary Neoplasms/genetics , Pituitary Neoplasms/therapy , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Tamoxifen/pharmacology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Transgenes/drug effects
6.
Mol Pharm ; 16(5): 2106-2117, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30883140

ABSTRACT

In humans, C-X-C chemokine receptor type 4 (CXCR4) is a protein that is encoded by the CXCR4 gene and binds the ligand CXCL12 (also known as SDF-1). The CXCR4-CXCL12 interaction in cancer elicits biological activities that result in tumor progression and has accordingly been the subject of significant investigation for detection and treatment of the disease. Peptidic antagonists have been labeled with a variety of radioisotopes for the detection of CXCR4, but the methodology utilizing small molecules has predominantly used radiometals. We report here the development of a 18F-radiolabeled cyclam-based small molecule radioprobe, [18F]MCFB, for imaging CXCR4 expression. The IC50 value of [19F]MCFB for CXCR4 was similar to that of AMD3465 (111.3 and 89.8 nM, respectively). In vitro binding assays show that the tracer depicted a differential CXCR4 expression, which was blocked in the presence of AMD3465, demonstrating the specificity of [18F]MCFB. Positron emission tomography (PET) imaging studies showed a distinct uptake of the radioprobe in lymphoma and breast cancer xenografts. High liver and kidney uptakes were seen with [18F]MCFB, leading us to further examine the basis of its pharmacokinetics in relation to the tracer's cationic nature and thus the role of organic cation transporters (OCTs). Substrate competition following the intravenous injection of metformin led to a marked decrease in the urinary excretion of [18F]MCFB, with moderate changes observed in other organs, including the liver. Our results suggest involvement of OCTs in the renal elimination of the tracer. In conclusion, the 18F-radiolabeled monocyclam, [18F]MCFB, has potential to detect tumor CXCR4 in nonhepatic tissues.


Subject(s)
Fluorodeoxyglucose F18/chemistry , Heterocyclic Compounds/chemistry , Neoplasms/metabolism , Radiopharmaceuticals/chemistry , Receptors, CXCR4/metabolism , Animals , Cell Line, Tumor , Chemokine CXCL12/metabolism , Female , Gene Knockdown Techniques , Heterografts , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplasms/diagnostic imaging , Organic Cation Transport Proteins/metabolism , Positron-Emission Tomography/methods , Pyridines , Receptors, CXCR4/genetics , Renal Elimination , Tissue Distribution
7.
Eur J Nucl Med Mol Imaging ; 42(4): 537-61, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25647074

ABSTRACT

Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms/diagnostic imaging , Radiopharmaceuticals , Animals , Biomarkers, Tumor/genetics , Humans , Neoplasms/pathology , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics
8.
Circulation ; 128(11): 1214-24, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23900048

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a disease of progressive vascular remodeling, characterized by dysregulated growth of pulmonary vascular cells and inflammation. A prevailing view is that abnormal cellular metabolism, notably aerobic glycolysis that increases glucose demand, underlies the pathogenesis of PAH. Increased lung glucose uptake has been reported in animal models. Few data exist from patients with PAH. METHODS AND RESULTS: Dynamic positron emission tomography imaging with fluorine-18-labeled 2-fluoro-2-deoxyglucose ((18)FDG) ligand with kinetic analysis demonstrated increased mean lung parenchymal uptake in 20 patients with PAH, 18 with idiopathic PAH (IPAH) (FDG score: 3.27±1.22), and 2 patients with connective tissue disease (5.07 and 7.11) compared with controls (2.02±0.71; P<0.05). Further compartment analysis confirmed increased lung glucose metabolism in IPAH. Lung (18)FDG uptake and metabolism varied within the IPAH population and within the lungs of individual patients, consistent with the recognized heterogeneity of vascular pathology in this disease. The monocrotaline rat PAH model also showed increased lung (18)FDG uptake, which was reduced along with improvements in vascular pathology after treatment with dicholoroacetate and 2 tyrosine kinase inhibitors, imatinib and sunitinib. Hyperproliferative pulmonary vascular fibroblasts isolated from IPAH patients exhibited upregulated glycolytic gene expression, along with increased cellular (18)FDG uptake; both were reduced by dicholoroacetate and imatinib. CONCLUSIONS: Some patients with IPAH exhibit increased lung (18)FDG uptake. (18)FDG positron emission tomography imaging is a tool to investigate the molecular pathology of PAH and its response to treatment.


Subject(s)
Fluorine Radioisotopes/pharmacokinetics , Fluorodeoxyglucose F18/pharmacokinetics , Hypertension, Pulmonary/diagnostic imaging , Lung/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Adult , Aged , Animals , Benzamides/therapeutic use , Cell Division , Dichloroacetic Acid/therapeutic use , Disease Models, Animal , Drug Monitoring , Familial Primary Pulmonary Hypertension , Female , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Profiling , Glycolysis/genetics , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Imatinib Mesylate , Indoles/therapeutic use , Lung/metabolism , Male , Middle Aged , Monocrotaline/toxicity , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Rats , Rats, Sprague-Dawley , Sunitinib , Young Adult
9.
Mol Imaging ; 132014.
Article in English | MEDLINE | ID: mdl-25341373

ABSTRACT

Molecular imaging is an attractive platform for noninvasive detection and assessment of cancer. In recent years, the targeted imaging of the C-X-C chemokine receptor 4 (CXCR4), a chemokine receptor that has been associated with tumor metastasis, has become an area of intensive research. This review article focuses on positron emission tomography (PET) and aims to provide useful and critical insights into the application of PET to characterize CXCR4 expression, including the chemical, radiosynthetic, and biological requirements for PET radiotracers. This discussion is informed by a summary of the different approaches taken so far and a comparison of their clinical translation. Finally, our expert opinions as to potential future advances in the field are expressed.


Subject(s)
Neoplasms/diagnosis , Radiopharmaceuticals , Receptors, CXCR4/analysis , Animals , Humans , Molecular Imaging , Neoplasms/metabolism , Positron-Emission Tomography/methods , Receptors, CXCR4/metabolism
10.
Breast Cancer Res Treat ; 148(2): 455-62, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25248409

ABSTRACT

The goal of targeted cancer therapies is to specifically block oncogenic signalling, thus maximising efficacy, while reducing side-effects to patients. The gamma-secretase (GS) complex is an attractive therapeutic target in haematological malignancies and solid tumours with major pharmaceutical activity to identify optimal inhibitors. Within GS, nicastrin (NCSTN) offers an opportunity for therapeutic intervention using blocking monoclonal antibodies (mAbs). Here we explore the role of anti-nicastrin monoclonal antibodies, which we have developed as specific, multi-faceted inhibitors of proliferation and invasive traits of triple-negative breast cancer cells. We use 3D in vitro proliferation and invasion assays as well as an orthotopic and tail vail injection triple-negative breast cancer in vivo xenograft model systems. RNAScope assessed nicastrin in patient samples. Anti-NCSTN mAb clone-2H6 demonstrated a superior anti-tumour efficacy than clone-10C11 and the RO4929097 small molecule GS inhibitor, acting by inhibiting GS enzymatic activity and Notch signalling in vitro and in vivo. Confirming clinical relevance of nicastrin as a target, we report evidence of increased NCSTN mRNA levels by RNA in situ hybridization (RNAScope) in a large cohort of oestrogen receptor negative breast cancers, conferring independent prognostic significance for disease-free survival, in multivariate analysis. We demonstrate here that targeting NCSTN using specific mAbs may represent a novel mode of treatment for invasive triple-negative breast cancer, for which there are few targeted therapeutic options. Furthermore, we propose that measuring NCSTN in patient samples using RNAScope technology may serve as companion diagnostic for anti-NCSTN therapy in the clinic.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Membrane Glycoproteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Flow Cytometry , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Bioorg Med Chem ; 22(2): 796-803, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24365390

ABSTRACT

Molecular imaging is an ideal platform for non-invasive detection and assessment of cancer. In recent years, the targeted imaging of CXCR4, a chemokine receptor that has been associated with tumour metastasis, has become an area of intensive research. In our pursuit of a CXCR4-specific radiotracer, we designed and synthesised a novel derivative of the CXCR4 peptidic antagonist TN14003, CCIC16, which is amenable to radiolabelling by chelation with a range of PET and SPECT radiometals, such as (68)Ga, (64)Cu and (111)In as well as (18)F (Al(18)F). Potent in vitro binding affinity and inhibition of signalling-dependent cell migration by unlabelled CCIC16 were confirmed by a threefold uptake in CXCR4-over-expressing cells compared to their isogenic counterparts. Furthermore, in vivo experiments demonstrated the favourable pharmacokinetic properties of the (68)Ga-labelled tracer (68)Ga-CCIC16, along with its CXCR4-specific accumulation in tissues with desirable contrast (tumour-to-muscle ratio: 9.5). The specificity of our tracer was confirmed by blocking experiments. Taking into account the attractive intrinsic PET imaging properties of (68)Ga, the comprehensive preclinical evaluation presented here suggests that (68)Ga-CCIC16 is a promising PET tracer for the specific imaging of CXCR4-expressing tumours.


Subject(s)
Neoplasms/diagnosis , Peptides , Positron-Emission Tomography , Receptors, CXCR4/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Gallium Radioisotopes , Humans , Mice, Inbred BALB C , Peptides/chemistry , Peptides/metabolism , Receptors, CXCR4/metabolism , Time Factors , Tissue Distribution
12.
J Labelled Comp Radiopharm ; 57(2): 92-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24307532

ABSTRACT

This study reports the radiosynthesis of a new fluorine-18 glycosylated 'click' cyanoquinoline [(18) F]5 for positron emission tomography imaging of epidermal growth factor receptor (EGFR). The tracer was obtained in 47.7 ± 7.5% (n = 3) decay-corrected radiochemical yield from 2-[(18) F]fluoro-2-deoxy-ß-d-glucopyranosyl azide, and the overall nondecay-corrected radiochemical yield from aqueous fluoride was 8.6 ± 2.3% (n = 3). An in vitro preliminary cellular uptake study showed selectivity of the tracer for EGFR-positive A431 cell lines versus EGFR-negative MCF-7 cell lines. [(18) F]5 tracer uptake in A431 cells was significantly reduced by addition of the cold isotope analogue compound 5.


Subject(s)
Azides/chemical synthesis , Deoxyglucose/analogs & derivatives , ErbB Receptors/metabolism , Fluorine Radioisotopes/chemistry , Quinolines/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Azides/pharmacology , Deoxyglucose/chemical synthesis , Deoxyglucose/pharmacology , Humans , Isotope Labeling , MCF-7 Cells , Protein Binding , Quinolines/pharmacology , Radiopharmaceuticals/pharmacology
13.
Angew Chem Int Ed Engl ; 53(36): 9550-4, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25045009

ABSTRACT

MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper-free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self-assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4-targeted peptide ligands were synthesized and characterized. The IONPs were tested in vitro and T2 signal enhancements of around 160 % were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor-bearing mice demonstrated the signal-enhancing ability of these 'smart' self-assembling nanomaterials.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Matrix Metalloproteinases/drug effects , Receptors, CXCR4/drug effects , Alkynes/chemistry , Animals , Azides/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/pathology
14.
J Nucl Med ; 65(1): 100-108, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38050111

ABSTRACT

The overexpression of fibroblast activation protein-α (FAP) in solid cancers relative to levels in normal tissues has led to its recognition as a target for delivering agents directly to tumors. Radiolabeled quinoline-based FAP ligands have established clinical feasibility for tumor imaging, but their therapeutic potential is limited due to suboptimal tumor retention, which has prompted the search for alternative pharmacophores. One such pharmacophore is the boronic acid derivative N-(pyridine-4-carbonyl)-d-Ala-boroPro, a potent and selective FAP inhibitor (FAPI). In this study, the diagnostic and therapeutic (theranostic) potential of N-(pyridine-4-carbonyl)-d-Ala-boroPro-based metal-chelating DOTA-FAPIs was evaluated. Methods: Three DOTA-FAPIs, PNT6555, PNT6952, and PNT6522, were synthesized and characterized with respect to potency and selectivity toward soluble and cell membrane FAP; cellular uptake of the Lu-chelated analogs; biodistribution and pharmacokinetics in mice xenografted with human embryonic kidney cell-derived tumors expressing mouse FAP; the diagnostic potential of 68Ga-chelated DOTA-FAPIs by direct organ assay and small-animal PET; the antitumor activity of 177Lu-, 225Ac-, or 161Tb-chelated analogs using human embryonic kidney cell-derived tumors expressing mouse FAP; and the tumor-selective delivery of 177Lu-chelated DOTA-FAPIs via direct organ assay and SPECT. Results: DOTA-FAPIs and their natGa and natLu chelates exhibited potent inhibition of human and mouse sources of FAP and greatly reduced activity toward closely related prolyl endopeptidase and dipeptidyl peptidase 4. 68Ga-PNT6555 and 68Ga-PNT6952 showed rapid renal clearance and continuous accumulation in tumors, resulting in tumor-selective exposure at 60 min after administration. 177Lu-PNT6555 was distinguished from 177Lu-PNT6952 and 177Lu-PNT6522 by significantly higher tumor accumulation over 168 h. In therapeutic studies, all 3 177Lu-DOTA-FAPIs exhibited significant antitumor activity at well-tolerated doses, with 177Lu-PNT6555 producing the greatest tumor growth delay and animal survival. 225Ac-PNT6555 and 161Tb-PNT6555 were similarly efficacious, producing 80% and 100% survival at optimal doses, respectively. Conclusion: PNT6555 has potential for clinical translation as a theranostic agent in FAP-positive cancer.


Subject(s)
Gallium Radioisotopes , Positron-Emission Tomography , Humans , Animals , Mice , Tissue Distribution , Cell Line, Tumor , Pyridines
15.
NPJ Breast Cancer ; 10(1): 42, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851818

ABSTRACT

The ESR1 ligand binding domain activating mutations are the most prevalent genetic mechanism of acquired endocrine resistance in metastatic hormone receptor-positive breast cancer. These mutations confer endocrine resistance that remains estrogen receptor (ER) dependent. We hypothesized that in the presence of the ER mutations, continued ER blockade with endocrine therapies that target mutant ER is essential for tumor suppression even with chemotherapy treatment. Here, we conducted comprehensive pre-clinical in vitro and in vivo experiments testing the efficacy of adding fulvestrant to fluorouracil (5FU) and the 5FU pro-drug, capecitabine, in models of wild-type (WT) and mutant ER. Our findings revealed that while this combination had an additive effect in the presence of WT-ER, in the presence of the Y537S ER mutation there was synergy. Notably, these effects were not seen with the combination of 5FU and selective estrogen receptor modulators, such as tamoxifen, or in the absence of intact P53. Likewise, in a patient-derived xenograft (PDX) harboring a Y537S ER mutation the addition of fulvestrant to capecitabine potentiated tumor suppression. Moreover, multiplex immunofluorescence revealed that this effect was due to decreased cell proliferation in all cells expressing ER and was not dependent on the degree of ER expression. Taken together, these results support the clinical investigation of the combination of ER antagonists with capecitabine in patients with metastatic hormone receptor-positive breast cancer who have experienced progression on endocrine therapy and targeted therapies, particularly in the presence of an ESR1 activating mutation.

16.
iScience ; 27(2): 108879, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327771

ABSTRACT

One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.

17.
Commun Biol ; 7(1): 793, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951146

ABSTRACT

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.


Subject(s)
Adipose Tissue, Brown , Neuroinflammatory Diseases , Animals , Humans , Adipose Tissue, Brown/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Bone Marrow/metabolism , Mice , Male , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/metabolism , Mice, Inbred C57BL , Female , Multiple Sclerosis/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Positron-Emission Tomography
18.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831751

ABSTRACT

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Subject(s)
Diet, High-Fat , Lactic Acid , Obesity , Prostatic Neoplasms , Proto-Oncogene Proteins c-myc , Tumor Microenvironment , Male , Animals , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Diet, High-Fat/adverse effects , Mice , Humans , Lactic Acid/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Obesity/metabolism , Obesity/pathology , Cell Line, Tumor , Mice, Inbred C57BL , Tumor-Associated Macrophages/metabolism
19.
Clin Cancer Res ; 30(9): 1889-1905, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38381406

ABSTRACT

PURPOSE: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN: We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS: We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS: Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Cycle , Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Drug Resistance, Neoplasm , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-myc , Receptors, Estrogen , Signal Transduction , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/genetics , Apoptosis/drug effects , Animals , Mice , Receptors, Estrogen/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Cell Cycle/drug effects , Xenograft Model Antitumor Assays , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , CRISPR-Cas Systems
20.
J Labelled Comp Radiopharm ; 56(13): 679-85, 2013 Nov.
Article in English | MEDLINE | ID: mdl-25196030

ABSTRACT

Huisgen cycloaddition is attractive to label peptide because of its rapidity and bioorthogonality. However, for larger tracers, the physico-chemical differences between the precursor and the tracer are usually insufficient to allow their separation by HPLC, reducing the specific activity. This is of importance for peptidic tracers because the combination of their high-affinity receptor with low specific activity results in the precursor saturating the receptors, causing non-specific tracer binding. Here, we report a fast, one-pot, general strategy to circumvent this issue, yielding a tracer of improved specific activity. It consists in adding a lipophilic azide after the labeling step to scavenge unreacted precursor into a more lipophilic species that does not co-elute with the tracer. We applied this strategy to a new fluorinated cyclopentapeptidic CXCR4 antagonist for the PET imaging of cancer, CCIC15, for which we managed to reduce the apparent peptide concentration by a factor of 34 in 10 min. This tracer was radiolabeled by click chemistry with 2-[(18) F]fluoroethylazide, yielding the tracer in 18 ± 6% (n = 5) end-of-synthesis radiochemical yields (EOS-RCY) in 1.5 h from [(18) F]fluoride with a specific activity of 19.4 GBq µmol(-1) . Preliminary biological evaluation of the probe confirmed potency and specificity for CXCR4; further biological evaluation is underway.


Subject(s)
Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Receptors, CXCR4/metabolism , Azides/chemistry , Cell Line, Tumor , Humans , Peptides, Cyclic/pharmacology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL