Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circ Res ; 132(7): 795-811, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36852690

ABSTRACT

BACKGROUND: Smooth muscle cells (SMC), the major cell type in atherosclerotic plaques, are vital in coronary artery diseases (CADs). SMC phenotypic transition, which leads to the formation of various cell types in atherosclerotic plaques, is regulated by a network of genetic and epigenetic mechanisms and governs the risk of disease. The involvement of long noncoding RNAs (lncRNAs) has been increasingly identified in cardiovascular disease. However, SMC lncRNAs have not been comprehensively characterized, and their regulatory role in SMC state transition remains unknown. METHODS: A discovery pipeline was constructed and applied to deeply strand-specific RNA sequencing from perturbed human coronary artery SMC with different disease-related stimuli, to allow for the detection of novel lncRNAs. The functional relevance of a select few novel lncRNAs were verified in vitro. RESULTS: We identified 4579 known and 13 655 de novo lncRNAs in human coronary artery SMC. Consistent with previous long noncoding RNA studies, these lncRNAs overall have fewer exons, are shorter in length than protein-coding genes (pcGenes), and have relatively low expression level. Genomic location of these long noncoding RNA is disproportionately enriched near CAD-related TFs (transcription factors), genetic loci, and gene regulators of SMC identity, suggesting the importance of their function in disease. Two de novo lncRNAs, ZIPPOR (ZEB-interacting suppressor) and TNS1-AS2 (TNS1-antisense 2), were identified by our screen. Combining transcriptional data and in silico modeling along with in vitro validation, we identified CAD gene ZEB2 as a target through which these lncRNAs exert their function in SMC phenotypic transition. CONCLUSIONS: Expression of a large and diverse set of lncRNAs in human coronary artery SMC are highly dynamic in response to CAD-related stimuli. The dynamic changes in expression of these lncRNAs correspond to alterations in transcriptional programs that are relevant to CAD, suggesting a critical role for lncRNAs in SMC phenotypic transition and human atherosclerotic disease.


Subject(s)
Plaque, Atherosclerotic , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Plaque, Atherosclerotic/metabolism , Transcription Factors/metabolism , Phenotype , Myocytes, Smooth Muscle/metabolism
2.
Chem Soc Rev ; 53(10): 5190-5226, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38586901

ABSTRACT

Etching technology - one of the representative modern semiconductor device makers - serves as a broad descriptor for the process of removing material from the surfaces of various materials, whether partially or entirely. Meanwhile, thinning technology represents a novel and highly specialized approach within the realm of etching technology. It indicates the importance of achieving an exceptionally sophisticated and precise removal of material, layer-by-layer, at the nanoscale. Notably, thinning technology has gained substantial momentum, particularly in top-down strategies aimed at pushing the frontiers of nano-worlds. This rapid development in thinning technology has generated substantial interest among researchers from diverse backgrounds, including those in the fields of chemistry, physics, and engineering. Precisely and expertly controlling the layer numbers of 2D materials through the thinning procedure has been considered as a crucial step. This is because the thinning processes lead to variations in the electrical and optical characteristics. In this comprehensive review, the strategies for top-down thinning of representative 2D materials (e.g., graphene, black phosphorus, MoS2, h-BN, WS2, MoSe2, and WSe2) based on conventional plasma-assisted thinning, integrated cyclic plasma-assisted thinning, laser-assisted thinning, metal-assisted splitting, and layer-resolved splitting are covered in detail, along with their mechanisms and benefits. Additionally, this review further explores the latest advancements in terms of the potential advantages of semiconductor devices achieved by top-down 2D material thinning procedures.

3.
Circulation ; 145(6): 469-485, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34990206

ABSTRACT

BACKGROUND: Smooth muscle cells (SMCs) transition into a number of different phenotypes during atherosclerosis, including those that resemble fibroblasts and chondrocytes, and make up the majority of cells in the atherosclerotic plaque. To better understand the epigenetic and transcriptional mechanisms that mediate these cell state changes, and how they relate to risk for coronary artery disease (CAD), we have investigated the causality and function of transcription factors at genome-wide associated loci. METHODS: We used CRISPR-Cas 9 genome and epigenome editing to identify the causal gene and cells for a complex CAD genome-wide association study signal at 2q22.3. Single-cell epigenetic and transcriptomic profiling in murine models and human coronary artery smooth muscle cells were used to understand the cellular and molecular mechanism by which this CAD risk gene exerts its function. RESULTS: CRISPR-Cas 9 genome and epigenome editing showed that the complex CAD genetic signals within a genomic region at 2q22.3 lie within smooth muscle long-distance enhancers for ZEB2, a transcription factor extensively studied in the context of epithelial mesenchymal transition in development of cancer. Zeb2 regulates SMC phenotypic transition through chromatin remodeling that obviates accessibility and disrupts both Notch and transforming growth factor ß signaling, thus altering the epigenetic trajectory of SMC transitions. SMC-specific loss of Zeb2 resulted in an inability of transitioning SMCs to turn off contractile programing and take on a fibroblast-like phenotype, but accelerated the formation of chondromyocytes, mirroring features of high-risk atherosclerotic plaques in human coronary arteries. CONCLUSIONS: These studies identify ZEB2 as a new CAD genome-wide association study gene that affects features of plaque vulnerability through direct effects on the epigenome, providing a new therapeutic approach to target vascular disease.


Subject(s)
Atherosclerosis/genetics , Epigenesis, Genetic/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Animals , Atherosclerosis/pathology , Humans , Mice , Single-Cell Analysis
4.
Anal Chem ; 95(34): 12656-12663, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37585497

ABSTRACT

Accurate and rapid detection of pathogens in foods of animal origin has been a critical part of the One Health Action Plan of the European Union (EU). Biosensors have the potential in bringing required technologies to accomplish this on the field, wherein loop-mediated isothermal amplification (LAMP) and lab-on-a-chip have proven to be ideal. We have developed a LAMP-based point-of-care (POC) device, the VETPOD, as a solution to the contemporary challenges in the rapid detection of Salmonella spp. The core technology in the VETPOD is a ready-to-use cartridge that included an injection-molded polymer chip with pyramid-shaped optical structures embedded within the chip. These pyramid-shaped optical structures direct the incident light, due to total internal reflection (TIR), through the reaction chambers to the phototransistor. The VETPOD was validated against the ISO 6579-1 reference method. A total of 310 samples were tested that included 180 Salmonella spiked samples in 6 different meat categories and 130 strains to determine the specificity. The overall results were satisfactory, wherein the VETPOD had an acceptable sensitivity (96.51%) compared to the reference (98.81%) and near perfect agreement with ISO 6579-1 with an overall Cohen's kappa of 0.94. The relative level of detection (RLOD) for the VETPOD was 1.38 CFU/25 g that was found to be 1.17 times higher than the reference. The VETPOD showed 98% precision for inclusivity and 100% precision for the exclusivity samples. The VETPOD proved as a useful alternative to detect Salmonella spp. that can be adaptable to a broader spectrum of pathogens in future.


Subject(s)
Meat Products , Salmonella enterica , Animals , Salmonella enterica/genetics , Point-of-Care Systems , Salmonella/genetics , Nucleic Acid Amplification Techniques/methods , Meat , Sensitivity and Specificity , Food Microbiology
5.
Sens Actuators B Chem ; 392: 134085, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37304211

ABSTRACT

Sensitive and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a vital goal in the ongoing COVID-19 pandemic. We present in this comprehensive work, for the first time, detailed fabrication and clinical validation of a point of care (PoC) device for rapid, onsite detection of SARS-CoV-2 using a real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) reaction on a polymer cartridge. The PoC system, namely PATHPOD, consisting of a standalone device (weight less than 1.2 kg) and a cartridge, can perform the detection of 10 different samples and two controls in less than 50 min, which is much more rapid than the golden standard real-time reverse-transcription Polymerase Chain Reaction (RT-PCR), typically taking 16-48 h. The novel total internal reflection (TIR) scheme and the reactions inside the cartridge in the PoC device allow monitoring of the diagnostic results in real-time and onsite. The analytical sensitivity and specificity of the PoC test are comparable with the current RT-PCR, with a limit of detection (LOD) down to 30-50 viral genome copies. The robustness of the PATHPOD PoC system has been confirmed by analyzing 398 clinical samples initially examined in two hospitals in Denmark. The clinical sensitivity and specificity of these tests are discussed.

6.
Adv Exp Med Biol ; 1413: 265-272, 2023.
Article in English | MEDLINE | ID: mdl-37195535

ABSTRACT

Traditionally, animal models have been used for recapitulating human physiology and for studying the pathological basis of many diseases affecting humankind. Indeed, over the centuries, animal models helped advance our understanding of the biology and pathology of drug therapy for humans. However, with the advent of genomics and pharmacogenomics, we now know that conventional models cannot accurately capture the pathological conditions and biological processes in humans, although humans share many physiological and anatomical features with many animals [1-3]. Species to species variation have raised concerns about the validity and suitability of animal models for studying human conditions. Over the past decade, the development and advances in microfabrication and biomaterials have spurred the growth in micro-engineered tissue and organ models (organs-on-a-chip, OoC) as alternatives to animal and cellular models [4]. This state-of-the-art technology has been used to emulate human physiology for investigating multitudes of cellular and biomolecular processes implicated in the pathological basis of disease (Fig. 13.1) [4]. Because of their tremendous potential, OoC-based models have been listed as one of the top 10 emerging technologies in the 2016 World Economic Forum [2].


Subject(s)
Lab-On-A-Chip Devices , Microphysiological Systems , Humans , Animals , Tissue Engineering
7.
PLoS Genet ; 16(1): e1008538, 2020 01.
Article in English | MEDLINE | ID: mdl-31917787

ABSTRACT

Genome-wide association studies have identified multiple novel genomic loci associated with vascular diseases. Many of these loci are common non-coding variants that affect the expression of disease-relevant genes within coronary vascular cells. To identify such genes on a genome-wide level, we performed deep transcriptomic analysis of genotyped primary human coronary artery smooth muscle cells (HCASMCs) and coronary endothelial cells (HCAECs) from the same subjects, including splicing Quantitative Trait Loci (sQTL), allele-specific expression (ASE), and colocalization analyses. We identified sQTLs for TARS2, YAP1, CFDP1, and STAT6 in HCASMCs and HCAECs, and 233 ASE genes, a subset of which are also GTEx eGenes in arterial tissues. Colocalization of GWAS association signals for coronary artery disease (CAD), migraine, stroke and abdominal aortic aneurysm with GTEx eGenes in aorta, coronary artery and tibial artery discovered novel candidate risk genes for these diseases. At the CAD and stroke locus tagged by rs2107595 we demonstrate colocalization with expression of the proximal gene TWIST1. We show that disrupting the rs2107595 locus alters TWIST1 expression and that the risk allele has increased binding of the NOTCH signaling protein RBPJ. Finally, we provide data that TWIST1 expression influences vascular SMC phenotypes, including proliferation and calcification, as a potential mechanism supporting a role for TWIST1 in CAD.


Subject(s)
Coronary Vessels/metabolism , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/genetics , Twist-Related Protein 1/genetics , Vascular Diseases/genetics , Cells, Cultured , Coronary Vessels/cytology , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Nuclear Proteins/metabolism , Polymorphism, Single Nucleotide , Protein Binding , Transcriptome , Twist-Related Protein 1/metabolism
8.
Mol Pharm ; 19(12): 4487-4505, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36305753

ABSTRACT

Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.


Subject(s)
Melanoma , Oncolytic Virotherapy , Skin Neoplasms , Humans , Melanoma/pathology , Pharmaceutical Preparations , Ipilimumab , Vemurafenib/therapeutic use , Skin Neoplasms/pathology
9.
Circ Res ; 126(4): 517-529, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31815603

ABSTRACT

RATIONALE: The gene encoding TCF21 (transcription factor 21) has been linked to coronary artery disease risk by human genome-wide association studies in multiple racial ethnic groups. In murine models, Tcf21 is required for phenotypic modulation of smooth muscle cells (SMCs) in atherosclerotic tissues and promotes a fibroblast phenotype in these cells. In humans, TCF21 expression inhibits risk for coronary artery disease. The molecular mechanism by which TCF21 regulates SMC phenotype is not known. OBJECTIVE: To better understand how TCF21 affects the SMC phenotype, we sought to investigate the possible mechanisms by which it regulates the lineage determining MYOCD (myocardin)-SRF (serum response factor) pathway. METHODS AND RESULTS: Modulation of TCF21 expression in human coronary artery SMC revealed that TCF21 suppresses a broad range of SMC markers, as well as key SMC transcription factors MYOCD and SRF, at the RNA and protein level. We conducted chromatin immunoprecipitation-sequencing to map SRF-binding sites in human coronary artery SMC, showing that binding is colocalized in the genome with TCF21, including at a novel enhancer in the SRF gene, and at the MYOCD gene promoter. In vitro genome editing indicated that the SRF enhancer CArG box regulates transcription of the SRF gene, and mutation of this conserved motif in the orthologous mouse SRF enhancer revealed decreased SRF expression in aorta and heart tissues. Direct TCF21 binding and transcriptional inhibition at colocalized sites were established by reporter gene transfection assays. Chromatin immunoprecipitation and protein coimmunoprecipitation studies provided evidence that TCF21 blocks MYOCD and SRF association by direct TCF21-MYOCD interaction. CONCLUSIONS: These data indicate that TCF21 antagonizes the MYOCD-SRF pathway through multiple mechanisms, further establishing a role for this coronary artery disease-associated gene in fundamental SMC processes and indicating the importance of smooth muscle response to vascular stress and phenotypic modulation of this cell type in coronary artery disease risk.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Coronary Artery Disease/genetics , Genetic Predisposition to Disease/genetics , Nuclear Proteins/genetics , Serum Response Factor/genetics , Trans-Activators/genetics , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites/genetics , Cells, Cultured , Gene Expression Regulation , HEK293 Cells , Humans , Myocytes, Smooth Muscle/cytology , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Serum Response Factor/metabolism , Signal Transduction/genetics , Trans-Activators/metabolism
10.
Future Oncol ; 18(35): 3895-3912, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36524960

ABSTRACT

Aims: Early detection of colorectal cancer (CRC) provides substantially better survival rates. This study aimed to develop a blood-based screening assay named SPOT-MAS ('screen for the presence of tumor by DNA methylation and size') for early CRC detection with high accuracy. Methods: Plasma cell-free DNA samples from 159 patients with nonmetastatic CRC and 158 healthy controls were simultaneously analyzed for fragment length and methylation profiles. We then employed a deep neural network with fragment length and methylation signatures to build a classification model. Results: The model achieved an area under the curve of 0.989 and a sensitivity of 96.8% at 97% specificity in detecting CRC. External validation of our model showed comparable performance, with an area under the curve of 0.96. Conclusion: SPOT-MAS based on integration of cancer-specific methylation and fragmentomic signatures could provide high accuracy for early-stage CRC detection.


A novel blood test for early detection of colorectal cancer. Colorectal cancer is a cancer of the colon or rectum, located at the lower end of the digestive tract. The early detection of colorectal cancer can help people with the disease have a higher chance of survival and a better quality of life. Current screening methods can be invasive, cause discomfort or have low accuracy; therefore newer screening methods are needed. In this study we developed a new screening method, called SPOT-MAS, which works by measuring the signals of cancer DNA in the blood. By combining different characteristics of cancer DNA, SPOT-MAS could distinguish blood samples of people with colorectal cancer from those of healthy individuals with high accuracy.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Sensitivity and Specificity , DNA Methylation , Mass Screening , Early Detection of Cancer , Biomarkers, Tumor/genetics
11.
Circulation ; 142(6): 575-590, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32441123

ABSTRACT

BACKGROUND: Smooth muscle cells (SMC) play a critical role in atherosclerosis. The Aryl hydrocarbon receptor (AHR) is an environment-sensing transcription factor that contributes to vascular development, and has been implicated in coronary artery disease risk. We hypothesized that AHR can affect atherosclerosis by regulating phenotypic modulation of SMC. METHODS: We combined RNA-sequencing, chromatin immunoprecipitation followed by sequencing, assay for transposase-accessible chromatin using sequencing, and in vitro assays in human coronary artery SMCs, with single-cell RNA-sequencing, histology, and RNAscope in an SMC-specific lineage-tracing Ahr knockout mouse model of atherosclerosis to better understand the role of AHR in vascular disease. RESULTS: Genomic studies coupled with functional assays in cultured human coronary artery SMCs revealed that AHR modulates the human coronary artery SMC phenotype and suppresses ossification in these cells. Lineage-tracing and activity-tracing studies in the mouse aortic sinus showed that the Ahr pathway is active in modulated SMCs in the atherosclerotic lesion cap. Furthermore, single-cell RNA-sequencing studies of the SMC-specific Ahr knockout mice showed a significant increase in the proportion of modulated SMCs expressing chondrocyte markers such as Col2a1 and Alpl, which localized to the lesion neointima. These cells, which we term "chondromyocytes," were also identified in the neointima of human coronary arteries. In histological analyses, these changes manifested as larger lesion size, increased lineage-traced SMC participation in the lesion, decreased lineage-traced SMCs in the lesion cap, and increased alkaline phosphatase activity in lesions in the Ahr knockout in comparison with wild-type mice. We propose that AHR is likely protective based on these data and inference from human genetic analyses. CONCLUSIONS: Overall, we conclude that AHR promotes the maintenance of lesion cap integrity and diminishes the disease-related SMC-to-chondromyocyte transition in atherosclerotic tissues.


Subject(s)
Coronary Vessels/pathology , Myocytes, Smooth Muscle/physiology , Receptors, Aryl Hydrocarbon/metabolism , Alkaline Phosphatase/genetics , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chondrogenesis , Collagen Type II/genetics , Environmental Exposure , Humans , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic , Receptors, Aryl Hydrocarbon/genetics
12.
Am J Hum Genet ; 103(3): 377-388, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30146127

ABSTRACT

Coronary artery disease (CAD) is the leading cause of death globally. Genome-wide association studies (GWASs) have identified more than 95 independent loci that influence CAD risk, most of which reside in non-coding regions of the genome. To interpret these loci, we generated transcriptome and whole-genome datasets using human coronary artery smooth muscle cells (HCASMCs) from 52 unrelated donors, as well as epigenomic datasets using ATAC-seq on a subset of 8 donors. Through systematic comparison with publicly available datasets from GTEx and ENCODE projects, we identified transcriptomic, epigenetic, and genetic regulatory mechanisms specific to HCASMCs. We assessed the relevance of HCASMCs to CAD risk using transcriptomic and epigenomic level analyses. By jointly modeling eQTL and GWAS datasets, we identified five genes (SIPA1, TCF21, SMAD3, FES, and PDGFRA) that may modulate CAD risk through HCASMCs, all of which have relevant functional roles in vascular remodeling. Comparison with GTEx data suggests that SIPA1 and PDGFRA influence CAD risk predominantly through HCASMCs, while other annotated genes may have multiple cell and tissue targets. Together, these results provide tissue-specific and mechanistic insights into the regulation of a critical vascular cell type associated with CAD in human populations.


Subject(s)
Coronary Artery Disease/genetics , Coronary Vessels/physiology , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Myocytes, Smooth Muscle/physiology , Quantitative Trait Loci/genetics , Cell Line , Genome-Wide Association Study/methods , Genomics/methods , Humans , Polymorphism, Single Nucleotide/genetics , Risk
13.
J Med Virol ; 93(9): 5660-5665, 2021 09.
Article in English | MEDLINE | ID: mdl-34042186

ABSTRACT

Genome-wide analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains is essential to better understand infectivity and virulence and to track coronavirus disease 2019 (COVID-19) cases and outbreaks. We performed whole-genome sequencing of 27 SARS-CoV-2 strains isolated between January 2020 and April 2020. A total of 54 mutations in different genomic regions was found. The D614G mutation, first detected in March 2020, was identified in 18 strains and was more likely associated with a lower cycle threshold (<25) in real-time reverse-transcription polymerase chain reaction diagnostic tests than the original D614 (prevalence ratio = 2.75; 95% confidence interval, 1.19-6.38). The integration of sequencing and epidemiological data suggests that SARS-CoV-2 transmission in both quarantine areas and in the community in Vietnam occur at the beginning of the epidemic although the country implemented strict quarantine quite early, with strict contact tracing, and testing. These findings provide insights into the nature of the epidemic, as well as shape strategies for COVID-19 prevention and control in Vietnam.


Subject(s)
COVID-19/virology , Genetic Variation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/transmission , Contact Tracing , Female , Humans , Male , Middle Aged , Mutation , Phylogeny , Quarantine , Regression Analysis , Vietnam/epidemiology , Whole Genome Sequencing , Young Adult
14.
PLoS Genet ; 14(10): e1007681, 2018 10.
Article in English | MEDLINE | ID: mdl-30307970

ABSTRACT

Although numerous genetic loci have been associated with coronary artery disease (CAD) with genome wide association studies, efforts are needed to identify the causal genes in these loci and link them into fundamental signaling pathways. Recent studies have investigated the disease mechanism of CAD associated gene SMAD3, a central transcription factor (TF) in the TGFß pathway, investigating its role in smooth muscle biology. In vitro studies in human coronary artery smooth muscle cells (HCASMC) revealed that SMAD3 modulates cellular phenotype, promoting expression of differentiation marker genes while inhibiting proliferation. RNA sequencing and chromatin immunoprecipitation sequencing studies in HCASMC identified downstream genes that reside in pathways which mediate vascular development and atherosclerosis processes in this cell type. HCASMC phenotype, and gene expression patterns promoted by SMAD3 were noted to have opposing direction of effect compared to another CAD associated TF, TCF21. At sites of SMAD3 and TCF21 colocalization on DNA, SMAD3 binding was inversely correlated with TCF21 binding, due in part to TCF21 locally blocking chromatin accessibility at the SMAD3 binding site. Further, TCF21 was able to directly inhibit SMAD3 activation of gene expression in transfection reporter gene studies. In contrast to TCF21 which is protective toward CAD, SMAD3 expression in HCASMC was shown to be directly correlated with disease risk. We propose that the pro-differentiation action of SMAD3 inhibits dedifferentiation that is required for HCASMC to expand and stabilize disease plaque as they respond to vascular stresses, counteracting the protective dedifferentiating activity of TCF21 and promoting disease risk.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Coronary Artery Disease/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Smad3 Protein/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Binding Sites , Cell Differentiation/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Epistasis, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Primary Cell Culture , Signal Transduction , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics
15.
PLoS Genet ; 14(11): e1007755, 2018 11.
Article in English | MEDLINE | ID: mdl-30444878

ABSTRACT

Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.


Subject(s)
Autoantigens/genetics , Coronary Artery Disease/genetics , Cytoskeletal Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Alleles , Animals , Autoantigens/metabolism , Becaplermin/metabolism , Binding Sites/genetics , Cells, Cultured , Chromosome Mapping , Coronary Artery Disease/etiology , Coronary Artery Disease/metabolism , Coronary Vessels/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Forkhead Box Protein O3/metabolism , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Mice , Mice, Transgenic , Models, Cardiovascular , Muscle Proteins/deficiency , Muscle Proteins/genetics , Protein Binding , Quantitative Trait Loci , Risk Factors
16.
Anal Chem ; 92(3): 2706-2713, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31904224

ABSTRACT

Bloodstream infections and invasive nontyphoidal Salmonellosis in particular remain a major health and economic burden worldwide. The complexity of blood matrixes along with extremely low concentration of pathogens in blood poses a great challenge for rapid and ultrasensitive detection. Sample preparation has been the critical step that should provide blood-matrix-free sample with the targeted pathogen in the highest possible concentration. In this work, we addressed this challenge by combining magnetic-bead-based pathogen concentration and solid-phase PCR (SP-PCR). The SP-PCR performed on a supercritical angle fluorescence (SAF) microlens array embedded in a microchip enabled quick and accurate detection of low levels of Salmonella enterica serovar typhimurium and enteritidis in blood samples without culture enrichment. Protein AG-magnetic beads immobilized with antisalmonella antibody could efficiently concentrate both Salmonella serovars with a capturing efficiency >95%. Higher tolerance of Phusion hot start DNA polymerase to PCR inhibitors and its compatibility with protein AG-magnetic beads allowed the integration of SP-PCR. Analysis of Salmonella-spiked blood samples with the SP-PCR resulted in a limit of detection (LoD) as low as 86 CFU/mL and 94 CFU/mL for S. typhimurium and S. enteritidis, respectively, that could be attributed to the high fluorescence collection efficiency of the SAF microlens array. These combinations reduced the duration of analysis to less than 3 h including sample preparation. This platform has the potential for wide application as a high-throughput biosensor to analyze pathogens in clinical, food, and environmental samples.


Subject(s)
Polymerase Chain Reaction , Salmonella enteritidis/genetics , Salmonella typhimurium/genetics , Animals , Cattle , Microscopy, Fluorescence , Salmonella enteritidis/metabolism , Salmonella enteritidis/pathogenicity , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity
17.
PLoS Genet ; 13(5): e1006750, 2017 May.
Article in English | MEDLINE | ID: mdl-28481916

ABSTRACT

Both environmental factors and genetic loci have been associated with coronary artery disease (CAD), however gene-gene and gene-environment interactions that might identify molecular mechanisms of risk are not easily studied by human genetic approaches. We have previously identified the transcription factor TCF21 as the causal CAD gene at 6q23.2 and characterized its downstream transcriptional network that is enriched for CAD GWAS genes. Here we investigate the hypothesis that TCF21 interacts with a downstream target gene, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates the cellular response to environmental contaminants, including dioxin and polycyclic aromatic hydrocarbons (e.g., tobacco smoke). Perturbation of TCF21 expression in human coronary artery smooth muscle cells (HCASMC) revealed that TCF21 promotes expression of AHR, its heterodimerization partner ARNT, and cooperates with these factors to upregulate a number of inflammatory downstream disease related genes including IL1A, MMP1, and CYP1A1. TCF21 was shown to bind in AHR, ARNT and downstream target gene loci, and co-localization was noted for AHR-ARNT and TCF21 binding sites genome-wide in regions of HCASMC open chromatin. These regions of co-localization were found to be enriched for GWAS signals associated with cardio-metabolic as well as chronic inflammatory disease phenotypes. Finally, we show that similar to TCF21, AHR gene expression is increased in atherosclerotic lesions in mice in vivo using laser capture microdissection, and AHR protein is localized in human carotid atherosclerotic lesions where it is associated with protein kinases with a critical role in innate immune response. These data suggest that TCF21 can cooperate with AHR to activate an inflammatory gene expression program that is exacerbated by environmental stimuli, and may contribute to the overall risk for CAD.


Subject(s)
Atherosclerosis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Atherosclerosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cells, Cultured , Coronary Vessels/cytology , Coronary Vessels/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , HEK293 Cells , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, Aryl Hydrocarbon/genetics
18.
Lab Invest ; 99(4): 452-469, 2019 04.
Article in English | MEDLINE | ID: mdl-30542067

ABSTRACT

The volume of point of care (POC) testing continues to grow steadily due to the increased availability of easy-to-use devices, thus making it possible to deliver less costly care closer to the patient site in a shorter time relative to the central laboratory services. A novel class of molecules called microRNAs have recently gained attention in healthcare management for their potential as biomarkers for human diseases. The increasing interest of miRNAs in clinical practice has led to an unmet need for assays that can rapidly and accurately measure miRNAs at the POC. However, the most widely used methods for analyzing miRNAs, including Northern blot-based platforms, in situ hybridization, reverse transcription qPCR, microarray, and next-generation sequencing, are still far from being used as ideal POC diagnostic tools, due to considerable time, expertize required for sample preparation, and in terms of miniaturizations making them suitable platforms for centralized labs. In this review, we highlight various existing and upcoming technologies for miRNA amplification and detection with a particular emphasis on the POC testing industries. The review summarizes different miRNA targets and signals amplification-based assays, from conventional methods to alternative technologies, such as isothermal amplification, paper-based, oligonucleotide-templated reaction, nanobead-based, electrochemical signaling- based, and microfluidic chip-based strategies. Based on critical analysis of these technologies, the possibilities and feasibilities for further development of POC testing for miRNA diagnostics are addressed and discussed.


Subject(s)
Genetic Techniques , MicroRNAs , Point-of-Care Systems , Humans , MicroRNAs/analysis , MicroRNAs/genetics
19.
Proc Natl Acad Sci U S A ; 113(46): 13057-13062, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27794120

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) patients carry a missense mutation in ACVR1 [617G > A (R206H)] that leads to hyperactivation of BMP-SMAD signaling. Contrary to a previous study, here we show that FOP fibroblasts showed an increased efficiency of induced pluripotent stem cell (iPSC) generation. This positive effect was attenuated by inhibitors of BMP-SMAD signaling (Dorsomorphin or LDN1931890) or transducing inhibitory SMADs (SMAD6 or SMAD7). In normal fibroblasts, the efficiency of iPSC generation was enhanced by transducing mutant ACVR1 (617G > A) or SMAD1 or adding BMP4 protein at early times during the reprogramming. In contrast, adding BMP4 at later times decreased iPSC generation. ID genes, transcriptional targets of BMP-SMAD signaling, were critical for iPSC generation. The BMP-SMAD-ID signaling axis suppressed p16/INK4A-mediated cell senescence, a major barrier to reprogramming. These results using patient cells carrying the ACVR1 R206H mutation reveal how cellular signaling and gene expression change during the reprogramming processes.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myositis Ossificans , Smad Proteins/metabolism , Activin Receptors, Type I/genetics , Adolescent , Adult , Animals , Cell Line , Cellular Reprogramming , Cellular Senescence , Child , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Female , Humans , Male , Mice, Transgenic , Middle Aged , Mutation , Myositis Ossificans/genetics , Signal Transduction
20.
Nat Methods ; 11(3): 291-3, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24509632

ABSTRACT

Precise editing of human genomes in pluripotent stem cells by homology-driven repair of targeted nuclease-induced cleavage has been hindered by the difficulty of isolating rare clones. We developed an efficient method to capture rare mutational events, enabling isolation of mutant lines with single-base substitutions without antibiotic selection. This method facilitates efficient induction or reversion of mutations associated with human disease in isogenic human induced pluripotent stem cells.


Subject(s)
Cytological Techniques/methods , Genome, Human , Induced Pluripotent Stem Cells/cytology , Anti-Bacterial Agents/pharmacology , Base Composition/genetics , Cell Line , Cloning, Molecular , Humans , Induced Pluripotent Stem Cells/drug effects , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL